
Search 
a new era
David Pilato

@dadoonet
@pilato.fr



Elasticsearch
You Know, for Search







These are not the droids  
you are looking for.



GET /_analyze 

{ 

  "char_filter": [ "html_strip" ], 

  "tokenizer": "standard", 

  "filter": [ "lowercase", "stop", "snowball" ], 

  "text": "These are <em>not</em> the droids 
         you are looking for." 

}
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These are <em>not</em> the droids you are looking for. 

{ "tokens": [{ 

      "token": "droid", 

      "start_offset": 27, "end_offset": 33, 

      "type": "<ALPHANUM>", "position": 4 

    },{ 

      "token": "you", 

      "start_offset": 34, "end_offset": 37, 

      "type": "<ALPHANUM>", "position": 5 

    }, { 

      "token": "look", 

      "start_offset": 42, "end_offset": 49, 

      "type": "<ALPHANUM>", "position": 7 

    }]}



Semantic 
search 
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You Know, for Search



Elasticsearch
You Know, for  Vector  Search



What is a 
  Vector ?



Embeddings represent your data 
Example: 1-dimensional vector

CartoonRealistic

Character Vector

[ -1 ]

[ 1 ]



Multiple dimensions 
represent different data aspects

Human

Machine

CartoonRealistic

Character Vector

[ -1, 1 ]

[ 1, 0 ]



Character Vector
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Similar data 
is grouped together

CartoonRealistic
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Machine



Vector search ranks objects 
by similarity (~relevance) to the query
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How do you
index  vectors ?



Architecture of Vector Search



Choice of Embedding Model

Extend to Higher Relevance  

●Apply hybrid scoring  

●Bring Your Own Model: 
requires expertise + labeled 
data

Start with Off-the Shelf 
Models  

●Text data: Hugging Face 
(like Microsoft's E5)  

●Images: OpenAI’s CLIP



Problem 
training vs actual use-case



PUT ecommerce 
{ 
  "mappings": { 
    "properties": { 
      "description": { 
        "type": "text" 
      } 
      "desc_embedding": { 
        "type": "dense_vector" 
      } 
    } 
  } 
}

dense_vector field type



{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
  "desc_embedding":[0.452,0.3242,…], 
  "img_embedding":[0.012,0.0,…] 
}

{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
  "desc_embedding":[0.452,0.3242,…] 
}

{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton" 
}

Data Ingestion and Embedding Generation

POST /ecommerce/_doc

Source data

POST /ecommerce/_doc



{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
  "desc_embedding":[0.452,0.3242,…] 
}

With Elastic ML

POST /ecommerce/_doc

Source data

commercial

{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
 }



How do you
search  vectors ?



Architecture of Vector Search



GET /ecommerce/_search 
{ 
 "query" : { 
    "bool": { 
      "must": [{   
         "knn": { 
           "field": "desc_embbeding",         
           "query_vector": [0.123, 0.244,...] 
         

         } 
      }], 
      "filter": { 
        "term": { 
          "department": "women" 
        } 
      }      
    } 
  }, 
  "size": 10 
}

knn query



GET /ecommerce/_search 
{ 
 "query" : { 
    "bool": { 
      "must": [{   
         "knn": { 
           "field": "desc_embbeding", 
           "query_vector_builder": { 
             "text_embedding": { 
              "model_text": "summer clothes", 
              "model_id": <text-embedding-model>  
             } 
           } 
         } 
      }], 
      "filter": { 
        "term": { 
          "department": "women" 
        } 
      }      
    } 
  }, 
  "size": 10 
}

knn query (with Elastic ML)

Transformer model

commercial



semantic_text field type

new from 8.15

POST ecommerce/_doc 
{ 
  "description": "Our best-selling…" 
}

GET ecommerce/_search 
{ 
  "query": { 
    "semantic": { 
      "field": "desc_embedding" 
      "query" : "I'm looking for a red dress for a DJ party" 
}}}

PUT ecommerce 
{ 
  "mappings": { 
    "properties": { 
      "description": { 
        "type": "text", 
        "copy_to": [ "desc_embedding" ] 
      } 
      "desc_embedding": { 
        "type": "semantic_text" 
      } 
    } 
  } 
}



Architecture of Vector Search



But how does it
really work?



q

Similarity

Human

Realistic

θ

d1

d2

cos(θ) =
⃗q × ⃗d

| ⃗q | × | ⃗d |

_score =
1 + cos(θ)

2



Similarity: cosine (cosine)

_score =
1 + 1

2
= 1 _score =

1 + 0
2

= 0.5 _score =
1 − 1

2
= 0

θ θ θ

Similar vectors 
θ close to 0 

cos(θ) close to 1

Orthogonal vectors 
θ close to 90° 

cos(θ) close to 0

Opposite vectors 
θ close to 180° 

cos(θ) close to -1



⃗q × ⃗d = | ⃗q | × cos(θ) × | ⃗d |

Similarity: Dot Product (dot_product or 
max_inner_product)

_scorefloat =
1 + dot_ product(q, d)

2

_scorebyte =
0.5 + dot_ product(q, d)

32768 × dims

q

θd

| ⃗q | × cos(θ)



l2_normq,d =
n

∑
i=1

(xi − yi)2

Similarity: Euclidean distance (l2_norm)

_score =
1

1 + (l2_normq,d)2
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Brute Force



Hierarchical Navigable Small Worlds (HNSW) 
One popular approach

HNSW: a layered approach that 
simplifies access to the nearest neighbor

Tiered: from coarse to fine 
approximation over a few steps

Balance: Bartering a little accuracy for a 
lot of scalability

Speed: Excellent query latency on large 
scale indices



float32
Recall: High 
Precision: High 
Rescore: Likely Not Needed 
 
 
 
Full RAM Required

int4
Recall: Low 
Precision: Low 
Oversampling: Needed 
 
Rescore: may be slower 
 
8X RAM Savings

bit
Recall: Bad 
Precision: Bad 
Oversampling: Needed 

Rescore: Expensive and Limiting 
 
32X RAM Savings

Scalar Quantization

int8
Recall: Good 
Precision: Good 
Oversampling: Moderate 
 
Rescore: Reasonable 
 
4X RAM Savings

Elasticsearch 
8.14+ default



BBQ aka Better Binary Quantization

float32 int4 bitint8 BBQ*

BBQ: 32X RAM savings.  
Faster & more accurate than Product Quantization 



100M vectors?  
Only 12GB!?! One single node.

Memory required



Benchmarketing



https://djdadoo.pilato.fr/



https://github.com/dadoonet/music-search/

https://github.com/dadoonet/music-search/


Elasticsearch
You Know, for  Hybrid  Search



Hybrid scoring

Term-based  
score

Vector similarity 
score

CombineLinear Combination 
manual boosting



GET ecommerce/_search 
{ 
  "query" : { 
    "bool" : { 
      "must" : [{ 
        "match": { 
          "description": { 
            "query": "summer clothes" 
          } 
        } 
      },{ 
        "semantic": { 
          "field": "desc_embbeding", 
          "query": "summer clothes", 
          "boost": 100.0 
        } 
      }] 
    } 
  } 
}

Manual boosting



PUT starwars 
{ 
  "mappings": { 
    "properties": { 
      "text.tokens": { 
        "type": "sparse_vector" 
      } 
    } 
  } 
}

GET starwars/_search 
{ 
   "query":{ 
      "sparse_vector": { 
        "field": "text.tokens", 
        "query_vector": { "lucas": 0.50047517,  
                          "ship": 0.29860738,  
                          "dragon": 0.5300422,  
                          "quest": 0.5974301, ... } 
      } 
   } 
}

"These are not the droids you are looking for.", 

"Obi-Wan never told you what happened to your father."



ELSER 
Elastic Learned Sparse EncodER

sparse_vector 
Not BM25 or (dense) vector 

Sparse vector like BM25 

Stored as inverted index

Commercial



ranking 3

Hybrid ranking
ranking 2ranking 1

Term-based  
score

Dense vector  
score

Combine

Sparse vector   
score

Reciprocal Rank Fusion (RRF) 
blend multiple  

ranking methods



Reciprocal Rank Fusion (RRF)

Dense Vector

Doc Score r(d) k+r(d)

A 1 1 61

B 0.7 2 62

C 0.5 3 63

D 0.2 4 64

E 0.01 5 65

Doc RRF Score

A 1/61 + 1/62 = 0,0325

C 1/63 + 1/61 = 0,0323

B 1/62 = 0,0161

F 1/63 = 0,0159

D 1/64 = 0,0156

BM25

Doc Score r(d) k+r(d)

C 1,341 1 61

A 739 2 62

F 732 3 63

G 192 4 64

H 183 5 65

D - set of docs 
R - set of rankings as permutation on 1..|D| 
k - typically set to 60 by default



BM25f

Sparse Vector

Dense Vector

Hybrid Ranking

+

+

GET index/_search 
{ 
  "retriever": { 
    "rrf": { 
     "retrievers": [{ 
          "standard" { "query": { 
              "match": {...}  
            }  
          } 
        },{ 
          "standard" { "query": { 
              "sparse_vector": {...}  
            }  
          } 
        },{ 
          "knn": { ... } 
        } 
      ] 
    } 
  } 
}

commercial



ChatGPT
Elastic and LLM



Search engines

Gen AI



LLM: opportunities and limits

one 
answer

GAI / LLM

your question

public internet data

your question





Retrieval Augmented Generation

the 
right  

answer

GAI / LLM

your question

+

public internet datayour business data

your question

context window

documents images audio



Demo
Elastic Playground 





Elasticsearch
You Know, for  Semantic  Search
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