
Search
a new era
David Pilato

@dadoonet
@pilato.fr

Elasticsearch
You Know, for Search

These are not the droids
you are looking for.

GET /_analyze

{

 "char_filter": ["html_strip"],

 "tokenizer": "standard",

 "filter": ["lowercase", "stop", "snowball"],

 "text": "These are not the droids
 you are looking for."

}

These are not the droids you are
looking for.

These are not the droids you are
looking for.

"char_filter": "html_strip"

These are not the droids you are looking for.

These
are
not
the
droids
you
are
looking
for

"tokenizer": "standard"

These
are
not
the
droids
you
are
looking
for

"filter": "lowercase"

these
are
not
the
droids
you
are
looking
for

droids
you

looking

"filter": "stop"

These
are
not
the
droids
you
are
looking
for

these
are
not
the
droids
you
are
looking
for

droids
you

looking

These
are
not
the
droids
you
are
looking
for

these
are
not
the
droids
you
are
looking
for

droid
you

look

"filter": "snowball"

These are not the droids you are looking for.

{ "tokens": [{

 "token": "droid",

 "start_offset": 27, "end_offset": 33,

 "type": "<ALPHANUM>", "position": 4

 },{

 "token": "you",

 "start_offset": 34, "end_offset": 37,

 "type": "<ALPHANUM>", "position": 5

 }, {

 "token": "look",

 "start_offset": 42, "end_offset": 49,

 "type": "<ALPHANUM>", "position": 7

 }]}

Semantic
search

≠
Literal

matches

Elasticsearch
You Know, for Search

Elasticsearch
You Know, for Vector Search

What is a
 Vector ?

Embeddings represent your data
Example: 1-dimensional vector

CartoonRealistic

Character Vector

[1

 1

Multiple dimensions
represent different data aspects

Human

Machine

CartoonRealistic

Character Vector

[1, 1

 1, 0

Character Vector

[1.0, 1.0

 1.0, 0.0

[1.0, 0.8

 1.0, 1.0

[1.0, 1.0

Similar data
is grouped together

CartoonRealistic

Human

Machine

Vector search ranks objects
by similarity (~relevance) to the query

CartoonRealistic

Rank Result

Query

1

2

3

4

5

Human

Machine

How do you
index vectors ?

Architecture of Vector Search

Choice of Embedding Model

Extend to Higher Relevance

●Apply hybrid scoring

●Bring Your Own Model:
requires expertise + labeled
data

Start with Off-the Shelf
Models

●Text data: Hugging Face
(like Microsoft's E5

●Images: OpenAI’s CLIP

Problem
training vs actual use-case

PUT ecommerce
{
 "mappings": {
 "properties": {
 "description": {
 "type": "text"
 }
 "desc_embedding": {
 "type": "dense_vector"
 }
 }
 }
}

dense_vector field type

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…],
 "img_embedding":[0.012,0.0,…]
}

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…]
}

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton"
}

Data Ingestion and Embedding Generation

POST /ecommerce/_doc

Source data

POST /ecommerce/_doc

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…]
}

With Elastic ML

POST /ecommerce/_doc

Source data

commercial

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 }

How do you
search vectors ?

Architecture of Vector Search

GET /ecommerce/_search
{
 "query" : {
 "bool": {
 "must": [{
 "knn": {
 "field": "desc_embbeding",
 "query_vector": [0.123, 0.244,...]

 }
 }],
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 },
 "size": 10
}

knn query

GET /ecommerce/_search
{
 "query" : {
 "bool": {
 "must": [{
 "knn": {
 "field": "desc_embbeding",
 "query_vector_builder": {
 "text_embedding": {
 "model_text": "summer clothes",
 "model_id": <text-embedding-model>
 }
 }
 }
 }],
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 },
 "size": 10
}

knn query (with Elastic ML

Transformer model

commercial

semantic_text field type

new from 8.15

POST ecommerce/_doc
{
 "description": "Our best-selling…"
}

GET ecommerce/_search
{
 "query": {
 "semantic": {
 "field": "desc_embedding"
 "query" : "I'm looking for a red dress for a DJ party"
}}}

PUT ecommerce
{
 "mappings": {
 "properties": {
 "description": {
 "type": "text",
 "copy_to": ["desc_embedding"]
 }
 "desc_embedding": {
 "type": "semantic_text"
 }
 }
 }
}

Architecture of Vector Search

But how does it
really work?

q

Similarity

Human

Realistic

θ

d1

d2

cos(θ) =
⃗q × ⃗d

| ⃗q | × | ⃗d |

_score =
1 + cos(θ)

2

Similarity: cosine (cosine)

_score =
1 + 1

2
= 1 _score =

1 + 0
2

= 0.5 _score =
1 − 1

2
= 0

θ θ θ

Similar vectors
θ close to 0

cos(θ) close to 1

Orthogonal vectors
θ close to 90°

cos(θ) close to 0

Opposite vectors
θ close to 180°

cos(θ) close to -1

⃗q × ⃗d = | ⃗q | × cos(θ) × | ⃗d |

Similarity: Dot Product (dot_product or
max_inner_product)

_scorefloat =
1 + dot_ product(q, d)

2

_scorebyte =
0.5 + dot_ product(q, d)

32768 × dims

q

θd

| ⃗q | × cos(θ)

l2_normq,d =
n

∑
i=1

(xi − yi)2

Similarity: Euclidean distance (l2_norm)

_score =
1

1 + (l2_normq,d)2

q

d

y

xx1 x2

y1

y2

n

∑
i=1

(x i−
y i)

2

Brute Force

Hierarchical Navigable Small Worlds (HNSW
One popular approach

HNSW: a layered approach that
simplifies access to the nearest neighbor

Tiered: from coarse to fine
approximation over a few steps

Balance: Bartering a little accuracy for a
lot of scalability

Speed: Excellent query latency on large
scale indices

float32
Recall: High
Precision: High
Rescore: Likely Not Needed

Full RAM Required

int4
Recall: Low
Precision: Low
Oversampling: Needed

Rescore: may be slower

8X RAM Savings

bit
Recall: Bad
Precision: Bad
Oversampling: Needed

Rescore: Expensive and Limiting

32X RAM Savings

Scalar Quantization

int8
Recall: Good
Precision: Good
Oversampling: Moderate

Rescore: Reasonable

4X RAM Savings

Elasticsearch
8.14 default

BBQ aka Better Binary Quantization

float32 int4 bitint8 BBQ*

BBQ 32X RAM savings.
Faster & more accurate than Product Quantization

100M vectors?
Only 12GB!?! One single node.

Memory required

Benchmarketing

https://djdadoo.pilato.fr/

https://github.com/dadoonet/music-search/

https://github.com/dadoonet/music-search/

Elasticsearch
You Know, for Hybrid Search

Hybrid scoring

Term-based
score

Vector similarity
score

CombineLinear Combination
manual boosting

GET ecommerce/_search
{
 "query" : {
 "bool" : {
 "must" : [{
 "match": {
 "description": {
 "query": "summer clothes"
 }
 }
 },{
 "semantic": {
 "field": "desc_embbeding",
 "query": "summer clothes",
 "boost": 100.0
 }
 }]
 }
 }
}

Manual boosting

PUT starwars
{
 "mappings": {
 "properties": {
 "text.tokens": {
 "type": "sparse_vector"
 }
 }
 }
}

GET starwars/_search
{
 "query":{
 "sparse_vector": {
 "field": "text.tokens",
 "query_vector": { "lucas": 0.50047517,
 "ship": 0.29860738,
 "dragon": 0.5300422,
 "quest": 0.5974301, ... }
 }
 }
}

"These are not the droids you are looking for.",

"Obi-Wan never told you what happened to your father."

ELSER
Elastic Learned Sparse EncodER

sparse_vector
Not BM25 or (dense) vector

Sparse vector like BM25

Stored as inverted index

Commercial

ranking 3

Hybrid ranking
ranking 2ranking 1

Term-based
score

Dense vector
score

Combine

Sparse vector
score

Reciprocal Rank Fusion (RRF
blend multiple

ranking methods

Reciprocal Rank Fusion (RRF

Dense Vector

Doc Score r(d) k+r(d)

A 1 1 61

B 0.7 2 62

C 0.5 3 63

D 0.2 4 64

E 0.01 5 65

Doc RRF Score

A 1/61 1/62 0,0325

C 1/63 1/61 0,0323

B 1/62 0,0161

F 1/63 0,0159

D 1/64 0,0156

BM25

Doc Score r(d) k+r(d)

C 1,341 1 61

A 739 2 62

F 732 3 63

G 192 4 64

H 183 5 65

D set of docs
R set of rankings as permutation on 1..|D|
k - typically set to 60 by default

BM25f

Sparse Vector

Dense Vector

Hybrid Ranking

+

+

GET index/_search
{
 "retriever": {
 "rrf": {
 "retrievers": [{
 "standard" { "query": {
 "match": {...}
 }
 }
 },{
 "standard" { "query": {
 "sparse_vector": {...}
 }
 }
 },{
 "knn": { ... }
 }
]
 }
 }
}

commercial

ChatGPT
Elastic and LLM

Search engines

Gen AI

LLM opportunities and limits

one
answer

GAI / LLM

your question

public internet data

your question

Retrieval Augmented Generation

the
right

answer

GAI / LLM

your question

+

public internet datayour business data

your question

context window

documents images audio

Demo
Elastic Playground

Elasticsearch
You Know, for Semantic Search

Search
a new era
David Pilato

@dadoonet
@pilato.fr

