The Bits Must Flow (net)Working through the abstractions

What happens when you visit a website?

2 — @CrayZeigh

Start with a classic Audience Participation

It's not DNS There's no way it's DNS It was DNS

-SSBroski

Why DNS?

3 — @CrayZeigh

Kenton

Internet Traffic Per Second

167,069 **G B**¹

¹https://interenetlivestats.com/one-second/#traffic-band

1,336,544,000,000,000 bits per second

OSI 7-Layer model

Application Presentation Session Transport Network Data Link Physical

OSI	TCP/IP
Application	Application
Presentation	
Session	
Transport	Transport
Network	Internet
Data Link	Network Access
Physical	

Why all these layers anyway?

Network Access:

Data Frames help translate digital to physical

Preamble	SFD	Destination MAC	Source MAC	Type	Data and Pad	FCS
7 Bytes	1 Byte	6 Bytes	6 Bytes	2 Bytes	46-1500 Bytes	4 Bytes

MAC Addresses

01:23:45:67:89:ab

11 — @CrayZeigh

but how do you figure out what your destination MAC address is?

MAC Addresses

01:23:45:67:89:ab

\rightarrow Identifies the (network) device

11 — @CrayZeigh

but how do you figure out what your destination MAC address is?

MAC Addresses

01:23:45:67:89:ab

→ Identifies the (network) device
→ For same-network devices

11 — @CrayZeigh

but how do you figure out what your destination MAC address is?

² Address Resolution Protocol

12 — @CrayZeigh

arp -a need a way to separate traffic

→ Mapping IPs and MAC addresses

² Address Resolution Protocol

12 — @CrayZeigh

arp -a need a way to separate traffic

→ Mapping IPs and MAC addresses → Broadcasts to find neighbors

² Address Resolution Protocol

12 — @CrayZeigh

arp -a need a way to separate traffic

13 — @CrayZeigh

→ Limiting Broadcast Domains

13 — @CrayZeigh

→ Limiting Broadcast Domains → IEEE 802.1q

13 — @CrayZeigh

→ Limiting Broadcast Domains → IEEE 802.1q → up to 4096 VLANs³

³ VXLAN addresses this but that's A Whole Other Thing

13 — @CrayZeigh

→ Limiting Broadcast Domains
→ IEEE 802.1q
→ up to 4096 VLANs³
→ Native or Tagged

³ VXLAN addresses this but that's A Whole Other Thing

13 — @CrayZeigh

AWS Connections as	Layer 2
Convoltion potencialio	

VLAN	Devices	Location	Deployed Date 💲	Description
1049	0	👙 DC	Sep 4th, 2020 5:53 AM	provisioning_vlan 👕
1173	0	SNY	2 years ago	layer2-testing
1174	0	SNY	2 years ago	layer2-testing-2
1254	0	👙 DA	Oct 14th, 2020 3:33 PM	"vSAN"
1336	1 🚯	띁 СН	23 days ago	default 👕
1337	1 🚯	띂 СН	23 days ago	elite 👕
1338	0	👙 DA	Oct 14th, 2020 3:33 PM	"Management"
1339	0	豊 DA	Oct 14th, 2020 3:33 PM	"VM Private Net"
1340	0	👙 DA	Oct 14th, 2020 3:33 PM	"vMotion"
1440	0	👙 DA	Oct 14th, 2020 3:33 PM	"VM Public Net"
2020	0	틒 СН	1422 @sraydeigh	Metal-AWS

+ Add VLAN

Segregating networks building mulitple kinds of VM traffic

Learn about Layer 2 🗹

Search table

Q

Manage VLAN

Packets wrap your digital data and know where to send it

nternet Protocol Version 4					
0					
Version	Header L	Differentiated Services	Total Length		
Identification			Flags	Fragment Offset	
Time t	to Live	Protocol	Header Checksum		
Source Address					
Destination Address					
Options: (4 bytes), Router Alert					

16 — @CrayZeigh

Probably never really dealt with Classed IP addresses though there is some

holdover in the reserved private IP space, 10.x, 172.16.x - 172.31.x, 192.168.x

→ Classess Inter Domain Routing

16 — @CrayZeigh

Probably never really dealt with Classed IP addresses though there is some

holdover in the reserved private IP space, 10.x, 172.16.x - 172.31.x, 192.168.x

 → Classess Inter Domain Routing
→ Replaced previous "class a/b/c" IP addressing to help address IP address availability

16 — @CrayZeigh

Probably never really dealt with Classed IP addresses though there is some

holdover in the reserved private IP space, 10.x, 172.16.x - 172.31.x, 192.168.x

→ Classess Inter Domain Routing

- → Replaced previous "class a/b/c" IP addressing to help address IP address availability
- \rightarrow Helps determine destination locality i.e. routing

16 — @CrayZeigh

Probably never really dealt with Classed IP addresses though there is some

holdover in the reserved private IP space, 10.x, 172.16.x - 172.31.x, 192.168.x

CIDR Notation

10.10.10.10/24

IP Address / Network Bits

P: 10.10.10.10 SM: 255.255.255.0

Converts to Binary:

Not aobut private, multicast or research IPs that's a different

22 — @CrayZeigh

→ Broadcast (10.10.10.255)

22 — @CrayZeigh

Not aobut private, multicast or research IPs that's a different

→ Broadcast (10.10.10.255) → Host bits all 1

22 — @CrayZeigh

Not aobut private, multicast or research IPs that's a different

→ Broadcast (10.10.10.255)
→ Host bits all 1
→ Network (10.10.10.0)

22 — @CrayZeigh

Not aobut private, multicast or research IPs that's a different

→ Broadcast (10.10.10.255)
 → Host bits all 1
 → Network (10.10.10.0)
 → Host bits all 0

22 — @CrayZeigh

Not aobut private, multicast or research IPs that's a different

thing Think of "network" as "any for routing purposes this cannot be used in any other way

All together

CIDR Notated IP Address of a Host	10.10.10/24
Network	10.10.10.0/24
Broadcast IP	10.10.255
Available Host IPs	10.10.10.1 - 254

CIDR	192.168.1.100/22
Network	192.168.0.0/22
Broadcast	192.168.3.255
Available Hosts	192.168.0.1 - 3.254

More Weird Ones

 \rightarrow /30

 \rightarrow /30

\rightarrow Costs 4 IPs, but only grants 2 hosts

 \rightarrow /30

→ Costs 4 IPs, but only grants 2 hosts → Broadcast & Network still apply

 \rightarrow /30

→ Costs 4 IPs, but only grants 2 hosts
 → Broadcast & Network still apply
 → Might use today for compatibility reason or because you like IP addresses

 \rightarrow /31

 \rightarrow /31

→ Creates 2 adjacet IPs, only "costs" 2 IPs

 \rightarrow /31

 → Creates 2 adjacet IPs, only "costs" 2 IPs
 → Proposed in RFC3021 in 2000(!) to combat dwindline IP availability

28 — @CrayZeigh

28 — @CrayZeigh

 \rightarrow /32 \rightarrow Single IP address

28 — @CrayZeigh

 \rightarrow /32

→ Single IP address → still very useful mainly for additional or public IPs

28 — @CrayZeigh

1. Checks network space to see address is local

Checks network space to see address is local
 Sends local ARP broadcast to find MAC of destination

Checks network space to see address is local
 Sends local ARP broadcast to find MAC of destination
 wraps packet in frame with newly discovered MAC

 Checks network space to see address is local
 Sends local ARP broadcast to find MAC of destination
 wraps packet in frame with newly discovered MAC
 sends data frame through switch to destination "directly"

1. Checks network space and see's address is remote

1. Checks network space and see's address is remote

2. Forwards packet to the local router (usually default gateway) through switch

1. Checks network space and see's address is remote

2. Forwards packet to the local router (usually default gateway) through switch

3. Wraps packet in frame with router's mac address and desired destination's IP

1. Checks network space and see's address is remote

2. Forwards packet to the local router (usually default gateway) through switch

- 3. Wraps packet in frame with router's mac address and desired destination's IP
- 4. Switch forwards frame to the router, router re-wraps the paket with a frame pointing to the next router in line

1. Checks network space and see's address is remote

- 2. Forwards packet to the local router (usually default gateway) through switch
- 3. Wraps packet in frame with router's mac address and desired destination's IP
 - 4. Switch forwards frame to the router, router re-wraps the paket with a frame pointing to the next router in line
 - 5. Eventually, router for 1.1.1.1 will recieve the packet, and wrap in a frame with the appropriate destination's MAC

Routing Tables

Routing Tables

 \rightarrow (also used locally on your hosts)

Routing Tables

→ (also used locally on your hosts) → 3 general types of routes

Routing Tables

→ (also used locally on your hosts)
 → 3 general types of routes
 → Connected (networks assigned to router interfaces)

Routing Tables

→ (also used locally on your hosts)
 → 3 general types of routes
 → Connected (networks assigned to router interfaces)
 → Static (manually set, default gateway usually)

Routing Tables

→ (also used locally on your hosts)
 → 3 general types of routes
 → Connected (networks assigned to router interfaces)
 → Static (manually set, default gateway usually)
 → Learned (Shared with peers, BGP)

Border Gateway Protocol

Border Gateway Protocol

→ Advertises routes between (TCP) peered Autonomous Systems

Border Gateway Protocol

- → Advertises routes between (TCP) peered Autonomous Systems
- → Routes can be aggregate "supernets" to save table space

Border Gateway Protocol

- → Advertises routes between (TCP) peered Autonomous Systems
- → Routes can be aggregate "supernets" to save table space
 → Helps determine "best" route to destination since multiple routes may contain the same prefixes

Border Gateway Protocol

- → Advertises routes between (TCP) peered Autonomous Systems
- → Routes can be aggregate "supernets" to save table space
 - → Helps determine "best" route to destination since multiple routes may contain the same prefixes
 - → Leveragable for anycast/edge performance increases

Troubleshooting BGP problems

BGP

BGP included in network design

Anycast

Anycast Benefits

IP address or hostname						
147.75.40.38						Test
LOCATION	REQ	MIN	MAX	AVG	STD DEV	LOSS
Frankfurt	3	8.42 ms	8.52 ms	8.47 ms	0.04 ms	0%
Amsterdam 147.75.40.38	3	0.73 ms	1.19 ms	0.97 ms	0.19 ms	0%
London 147.75.40.38	3	7.9 ms	8.88 ms	8.27 ms	0.43 ms	0%
New York	3	1.71 ms	2.53 ms	2.06 ms	0.34 ms	0%
Dallas	3	39.06 ms	39.95 ms	39.42 ms	0.38 ms	0%
San Francisco	3	2.2 ms	2.65 ms	2.38 ms	0.2 ms	0%
Singapore 147.75.40.38	3	1.23 ms	1.83 ms	1.46 ms	0.27 ms	0%
Sydney 147.75.40.38	3	92.49 ms	92.57 ms	92.54 ms	0.04 ms	0%
• Tokyo 147.75.40.38	3	74.49 ms	74.6 ms	74.57 ms	0.05 ms	0%
Bangalore 147.75.40.38	3	147.75 ms	148.62 ms	148.05 ms	0.41 ms	0%

What happens when you visit a website?

dev advocate: EQUINIX

organizer: <

sometimes host:

Twitter: @CrayZeigh *Slides:* speaking.crayzeigh.com

39