
🎹 Searching for
similar musics 🎻🎸
David Pilato | @dadoonet

Elasticsearch
You Know, for Search

These are not the droids
you are looking for.

GET /_analyze

{

 "char_filter": ["html_strip"],

 "tokenizer": "standard",

 "filter": ["lowercase", "stop", "snowball"],

 "text": "These are not the droids
 you are looking for."

}

These are not the droids you are
looking for.

These are not the droids you are
looking for.

"char_filter": "html_strip"

These are not the droids you are looking for.

These
are
not
the
droids
you
are
looking
for

"tokenizer": "standard"

These
are
not
the
droids
you
are
looking
for

"filter": "lowercase"

these
are
not
the
droids
you
are
looking
for

These
are
not
the
droids
you
are
looking
for

"filter": "stop"

droids
you

looking

"filter": "snowball"

droids
you
looking

droid
you
look

These are not the droids you are looking for.

{ "tokens": [{

 "token": "droid",

 "start_offset": 27, "end_offset": 33,

 "type": "<ALPHANUM>", "position": 4

 },{

 "token": "you",

 "start_offset": 34, "end_offset": 37,

 "type": "<ALPHANUM>", "position": 5

 }, {

 "token": "look",

 "start_offset": 42, "end_offset": 49,

 "type": "<ALPHANUM>", "position": 7

 }]}

Semantic
search

≠
Literal

matches

Elasticsearch
You Know, for Search

Elasticsearch
You Know, for Vector Search

Embeddings represent your data
Example: 1-dimensional vector

CartoonRealistic

Character Vector

[-1]

[1]

Multiple dimensions
represent different data aspects

Human

Machine

CartoonRealistic

Character Vector

[-1, 1]

[1, 0]

Character Vector

[-1.0, 1.0]

[1.0, 0.0]

[-1.0, 0.8]

[1.0, 1.0]

[-1.0, -1.0]

Similar data
is grouped together

CartoonRealistic

Human

Machine

Vector search ranks objects
by similarity (~relevance) to the query

CartoonRealistic

Rank Result

Query

1

2

3

4

5

Human

Machine

How do you
index vectors ?

Architecture of Vector Search

PUT ecommerce
{
 "mappings": {
 "properties": {
 "description": {
 "type": "text"
 }
 "desc_embedding": {
 "type": "dense_vector"
 }
 }
 }
}

dense_vector field type

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…],
 "img_embedding":[0.012,0.0,…]
}

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…]
}

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton"
}

Data Ingestion and Embedding Generation

POST /ecommerce/_doc

Source data

POST ecommerce/_doc

How do you
search vectors ?

Architecture of Vector Search

GET ecommerce/_search
{
 "query" : {
 "bool": {
 "must": [{
 "knn": {
 "field": "desc_embbeding",
 "num_candidates": 50,
 "query_vector": [0.123, 0.244,...]

 }
 }],
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 },
 "size": 10
}

knn query

Architecture of Vector Search

But how does it
really work?

q

Similarity

Human

Realistic

θ

d1

d2

cos(θ) =
⃗q × ⃗d

| ⃗q | × | ⃗d |

_score =
1 + cos(θ)

2

Similarity: cosine (cosine)

_score =
1 + 1

2
= 1 _score =

1 + 0
2

= 0.5 _score =
1 − 1

2
= 0

θ θ θ

Similar vectors
θ close to 0

cos(θ) close to 1

Orthogonal vectors
θ close to 90°

cos(θ) close to 0

Opposite vectors
θ close to 180°

cos(θ) close to -1

https://djdadoo.pilato.fr/

https://github.com/dadoonet/music-search/

https://github.com/dadoonet/music-search/

🎹 Searching for
similar musics 🎻🎸
David Pilato | @dadoonet

