

Searching for similar musics

David Pilato | @dadoonet

Elasticsearch

You Know, for Search

These are not the droids you are looking for.

GET / analyze { "char filter": ["html strip"], "tokenizer": "standard", "filter": ["lowercase", "stop", "snowball"], "text": "These are not the droids you are looking for."

"char_filter": "html_strip"

These are not the droids you are looking for.

These are not the droids you are looking for.

"tokenizer": "standard"

These are not the droids you are looking for.

These are not the droids you are looking for

"filter": "lowercase"

These	t hese
are	are
not	not
the	the
droids	droids
you	you
are	are
looking	looking
for	for

"filter": "stop"

"filter": "snowball"


```
These are <em>not</em> the droids you are looking for.
{ "tokens": [{
      "token": "droid",
      "start offset": 27, "end offset": 33,
      "type": "<ALPHANUM>", "position": 4
    },{
      "token": "you",
      "start offset": 34, "end offset": 37,
      "type": "<ALPHANUM>", "position": 5
    }, {
      "token": "look",
      "start offset": 42, "end offset": 49,
      "type": "<ALPHANUM>", "position": 7
    }]}
```


Semantic search ≠ Literal matches S similar

YOU'RE COMPARING APPLES TO NECTARINES

Elasticsearch

You Know, for Search

Embeddings represent your data Example: 1-dimensional vector

Multiple dimensions represent different data aspects

Similar data is grouped together

Vector search ranks objects by similarity (~relevance) to the query

How do you index vectors?

Architecture of Vector Search

dense_vector field type

```
PUT ecommerce
{
    "mappings": {
        "properties": {
            "description": {
               "type": "text"
            }
        "desc_embedding": {
               "type": "dense_vector"
            }
        }
      }
    }
}
```


Data Ingestion and Embedding Generation

How do you search vectors?

Architecture of Vector Search

Architecture of Vector Search

But how does it

really work?

Similarity

Similarity: cosine (cosine)

https://djdadoo.pilato.fr/

https://github.com/dadoonet/music-search/

Searching for similar musics

David Pilato | @dadoonet

