
OWASP Mobile Top 10 Risk
M3 : Insufficient Transport Layer

Protection
	

Anant Shrivastava

About Me	
•  Anant Shrivastava (@anantshri)
•  http://www.anantshri.info
•  Independent Information Security Consultant
•  Focus Area’s : Web, Mobile, Linux
•  Current Project:

o  CodeVigilant (codevigilant.com)
•  An initiative to find flaws in open source software and perform a

responsible disclosure. Website currently holds 160+ disclosed
vulnerability in various wordpress plugins.

o  Android Tamer (androidtamer.com)
•  Live ISO environment for Android Security Researchers. Used by

multiple researchers as well as Trainers across the globe.

Agenda	
•  Understand Transport Layer
•  Understand Transport Protections
•  Understand Complexities/Insecurities in transport

layer protection.
•  How to Find Insecure or inadequate protections
•  How to Prevent it

Transport Layer	
•  OSI Model Layer 4 (from bottom or top)
•  A transport layer provides end-to-end or host-to-

host communication services for applications within
a layered architecture of network components and
protocols.

•  Protocols in Use : TCP and UDP
•  The transport layer is responsible for delivering data

to the appropriate application process on the host
computers

•  Unique Identifier : IP:Port (URI)
•  In short backbone of internet communication

TCP Headers	

UDP Headers	

Transport Layer Protections	
•  Commonly known as Transport Layer Security (TLS)

or formerly Secure Socket Layer (SSL)
•  Latest version in use TLSv1.2
•  Commonly found: SSLv2, SSLv3/TLSv1.0,TLSv1.1
•  Uses X509 Certificate based asymetric encryption.
•  What we generally know as HTTPS

•  TLS v1.3 in draft since July 2014.
•  first defined in 1999 and last updated in RFC 5246

(August 2008) and RFC 6176 (March 2011).

TLS Certificates	
•  Issued by a CA (Certification Authority)
•  Follows a chain of trust to establish the identity of a

website.
•  For internal purposes people use self-signed

certificate which doesn’t following trusted chain.

•  Example of trusted chain @ google.com

Various Algorithms in use	

Mobile Prospective	

Data in transit over
TCP / UDP	

Insecure implementations	
•  Using Known Weak Ciphers / version (SSLv2, RC4,

MD5, CBC in SSL3)
•  Communication using Self-signed certificate

(ignoring warning)
•  Securing only specific portion of communication
•  Not validating the chain of trust
•  Mixxing TLS and non TLS content on Page

SSL Version 2	
•  SSL version 2 was designed in 1994 by Netscape. Its 20

years old this year.
•  Known attacks

o  Identical cryptographic keys are used for message authentication and
encryption.

o  SSL 2.0 has a weak MAC construction that uses the MD5 hash function with a
secret prefix, making it vulnerable to length extension attacks.

o  SSL 2.0 does not have any protection for the handshake, meaning a man-in-
the-middle downgrade attack can go undetected.

o  SSL 2.0 uses the TCP connection close to indicate the end of data. This means
that truncation attacks are possible: the attacker simply forges a TCP FIN,
leaving the recipient unaware of an illegitimate end of data message (SSL 3.0
fixes this problem by having an explicit closure alert).

o  SSL 2.0 assumes a single service and a fixed domain certificate, which clashes
with the standard feature of virtual hosting in Web servers. This means that most
websites are practically impaired from using SSL

•  Blocked in most modern browsers (IE 6 users anyone?)

Other versions	
•  SSLv3 (was working good till 2012)
•  SSL 3.0 cipher suites have a weaker key derivation

process; half of the master key that is established is
fully dependent on the MD5 hash function

•  More attacks
o  Renegotiation attack
o  BEAST attack
o  CRIME and BREACH attacks
o  Padding attacks (Lucky 13)
o  RC4 Attacks
o  Implementation bugs like (Apple SSL, Heartbleed, GNUTLS Fail)

Chain of trust	
•  Establish chain of trust
•  Ensure the connection has exact same chain of trust as official

certificate.

•  Any certificate in the chain is self-signed, unless it the root.
•  Not every intermediate certificate is checked, starting from

the original certificate all the way up to the root certificate.
•  An intermediate, CA-signed certificate does not have the

expected Basic Constraints or other important extensions.
•  The root certificate has been compromised or authorized to

the wrong party.
•  Ref : http://cwe.mitre.org/data/definitions/296.html

Mixing content	
•  HTTP and HTTPS content
•  HTTP can be cached and read over the wire.
•  Analytics and tracking generally use http for quick

transaction and hence susceptible.

Detecting SSL issues	
•  Launch emulator / start device.
•  Add proxy settings for burp/zap/ironwasp etc
•  Run application and check if traffic interception

works and application performs its actions.
(Implementation is flawed)

•  Identify end points

•  End point Implementation flaws : use SSLScan
(either original or rbsec/sslscan at github)

Preventions	

Preventions	
•  Assume connection is compromised
•  Disable weak ciphers and versions
•  Perform entire sensitive communication over TLS
•  Never allow connection using Self-signed certificate.
•  Use secure versions of tracking/analytics/ad network SDK
•  Add a second layer of encryption for sensitive data.
•  Follow Rules:

https://www.owasp.org/index.php/
Transport_Layer_Protection_Cheat_Sheet

•  Perform certificate validation via Certificate pinning :
refer
http://www.thoughtcrime.org/blog/authenticity-is-
broken-in-ssl-but-your-app-ha/

Preventions	
•  iOS: For CFNetwork, use Secure Transport API to

designate trusted client certificates
•  iOS: all NSURL calls (or wrappers of NSURL) do not allow

self signed or invalid certificates such as the NSURL class
method setAllowsAnyHTTPSCertificate.

•  iOS Cert Pinning : export your certificate, include it in
your app bundle, and anchor it to your trust object.
Using the NSURL method
connection:willSendRequestForAuthenticationChallenge:
will now accept your cert.

•  Android: ensure
org.apache.http.conn.ssl.AllowAllHostnameVerifier or
SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER are
not present

References	
•  https://en.wikipedia.org/wiki/Transport_layer
•  https://www.owasp.org/index.php/Mobile_Top_10_2014-

M3
•  http://www2.dcsec.uni-hannover.de/files/android/p50-

fahl.pdf
•  TCP UDP Headers : http://nmap.org/book/tcpip-ref.html
•  https://commons.wikimedia.org/wiki/

File:Mobile_and_desktop_device_templates.svg
•  https://openclipart.org/collection/collection-detail/

silpstream/8546
•  http://www.troyhunt.com/2013/06/understanding-risk-of-

mixed-content.html

Question Time	

