
The other side of
webapp security
Luka Kladaric
Sekura Collective
luka@sekura.io
@kll

1

What this talk is about
Securing users, their browsers and computers.

2

What this talk isn’t about
Securing your servers or the data on them.

3

Quick poll

• Who here runs a website?

• Does it support HTTPS?

• Does it enforce HTTPS?

• Does it have HSTS headers set?

4

HTTPS / SSL / TLS

These mean subtly different things.

In the context of web development
A method of encrypting traffic to and from a web server using
a server-provided certificate.

5

HTTPS (2)

If the certificate is signed by a trusted party it also gives us a
degree of confidence that the server we’re communicating
with is actually authorized to speak on behalf of the website
we’re trying to visit.

Certificates can also be self-signed, or otherwise signed by an
untrusted party. These are mostly worthless.

6

HTTPS (3)

Once you’ve established the other side possesses a trusted
certificate, the chance you’re being MitM1-ed or spied on
drops by orders of magnitude.

1 MitM - Man in the Middle attack

7

Forcing HTTPS and pitfalls

Forcing HTTPS means redirecting any plaintext traffic to
HTTPS.

It’s good in that it redirects people to the secure site,
and you should definitely do that.

8

But it’s bad in many ways.

9

Forcing HTTPS - gotchas (1)

Obscures/hides the fact that certain things still point to your
plaintext address.

Like... login form or oAuth callback pointed at http

Users are successfully logged in, but the credentials are
transmitted unencrypted first, before getting redirected to
https.

10

Forcing HTTPS - gotchas (2)

Takes people to the right place which means they will never
update their bookmarks.

11

Forcing HTTPS - gotchas (3)

Doesn’t usually work for non-human visitors - mobile apps and
other clients, which generally construct each request from
scratch rather than pick a link from the page they were served.

So, if it works at all it just duplicates traffic where every single
request is initiated over HTTP first and then bounced to HTTPS.

12

Forcing HTTPS - gotchas (4)

Breaks POST requests which cannot be redirected.

13

Forcing HTTPS - gotchas (5)

The redirect itself is not secure.

An MitM attack could happen at this point, with the user
continuing to browse the http site while the attacker proxies
requests back and forth for the user over https with neither
side being aware that anything is off.

14

Enter HSTS
The magic bullet?

15

HSTS?
HTTP Strict Transport Security

16

A response header that says

"don’t even attempt to contact me
over plaintext HTTP for X seconds."

Strict-Transport-Security: max-age=31536000

17

Include all subdomains
The header can optionally apply to all subdomains, too.

Strict-Transport-Security: max-age=31536000;↵
 includeSubDomains

18

HSTS preload

HSTS + long timeout + includeSubDomains + preload = win!

Strict-Transport-Security: max-age=31536000;↵
 includeSubDomains; preload

19

HSTS gotchas (1)

If you can’t force HTTPS, you can’t enable HSTS.

20

HSTS gotchas (2)

If you have subdomains which don’t support HTTPS, or still
need to receive plaintext traffic, you can’t enable
“includeSubdomains”.

21

HSTS gotchas (3)

If you can’t include subdomains, you can’t enable preload.

Which means you still have that first request for users typing in
your domain name or following an old link that is vulnerable.

22

HSTS is a must
Start rolling it out today.

It will hurt, but it will pay off.

23

Secure cookies

Cookies are used for various tracking and storage purposes,
but the most critical use is to keep logged in state.

To leak these is to let other people impersonate a legitimate
user in their interaction with your website / application.

24

Secure cookies

Absolutely make sure that all the cookies you are sending to
your users have the “Secure” flag set on them, so that even if a
plaintext HTTP request ever happens, they are not transmitted.

25

XSS

XSS is bad.

Don’t let XSS happen to you.

The end. j/k

26

CSP

Content Security Policy is an HTTP response header that
reduces the risk of XSS in modern browsers by declaring which
inline or external resources are allowed.

27

CSP

It also lets you block all inline scripts except the ones
explicitly whitelisted by several available methods.

The combination of these two things makes XSS unusable
on your website, despite any backend code flaws.

28

CSP - nonces

A nonce can be used to whitelist inline scripts which contain no
dynamic content. A single nonce can be used for all static
inline scripts.
Content-Security-Policy: default-src 'self'; script-src 'nonce-4AEemGb0xJptoIGFP3Nd'
<script type="text/javascript" nonce="4AEemGb0xJptoIGFP3Nd">

USE A DIFFERENT NONCE FOR EACH REQUEST!

29

CSP - hashes

For scripts that are static but trusted, we can use hashes.

Content-Security-Policy: script-src 'sha256-
cLuU6nVzrYJlo7rUa6TMmz3nylPFrPQrEUpOHllb5ic='

30

CSP - final

Content-Security-Policy:
 default-src 'none';
 script-src 'self' 'nonce-0gscAiOe9cvhDVnsp2jy'
 www.google-analytics.com
 cdnjs.cloudflare.com;
 object-src 'none';
 style-src 'self' 'unsafe-inline' cdnjs.cloudflare.com;
 img-src 'self' www.google-analytics.com
 stats.g.doubleclick.net;
 media-src 'none';
 font-src 'self' fonts.gstatic.com;
 connect-src 'self';
 base-uri 'self';
 child-src www.google.com;
 form-action 'self' accounts.google.com www.paypal.com;
 frame-ancestors 'none';
 upgrade-insecure-requests;
 report-uri https://yoursite.report-uri.com/r/d/csp/enforce

31

CSP Report-Only

Use Content-Security-Policy-Report-Only to log issues (to
report-uri and console) without blocking any content while
rolling out.

32

Questions?
Luka Kladaric
Sekura Collective
luka@sekura.io
@kll

33

Thank you!
Luka Kladaric
Sekura Collective
luka@sekura.io
@kll

34

