

JJJJJJaaaaaavvvvvvaaaaaa PPPPPPeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee TTTTTToooooooooooollllllssssss

Dr Holly Cummins

Tooling Technical Lead

Java Technology Centre

IBM

cumminsh@uk.ibm.com

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Identifying performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

WWWWWWhhhhhheeeeeennnnnn wwwwwwoooooouuuuuulllllldddddd yyyyyyoooooouuuuuu uuuuuusssssseeeeee aaaaaa ppppppeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee ttttttoooooooooooollllll??????

• When you have a performance problem!

WWWWWWhhhhhhaaaaaatttttt''''''ssssss aaaaaa ppppppeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee pppppprrrrrroooooobbbbbblllllleeeeeemmmmmm??????

• It doesn't go as fast as you think it ought to
• It doesn't go as fast as your users demand
• It starts out fine and then after some period doesn't go

as fast as it used to
• It hangs

– This is a quite severe example of a performance problem

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Assessing performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

AAAAAAsssssssssssseeeeeessssssssssssiiiiiinnnnnngggggg ppppppeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee pppppprrrrrroooooobbbbbblllllleeeeeemmmmmmssssss

• Performance must be measured before problems can be
fixed
– Otherwise you risk making things worse with a clever fix

• We don't provide a tool for this!
– A performance tool cannot do your performance

measurement for you

• Performance measurement must be based on your
application and your quality of service requirements
– Throughput
– Response times

• Mean response time
• 90th percentile response time
• Worst-case response time

TTTTTThhhhhheeeeee ppppppeeeeeerrrrrriiiiiillllllssssss ooooooffffff bbbbbbeeeeeennnnnncccccchhhhhhmmmmmmaaaaaarrrrrrkkkkkkssssss

• Sometimes measuring the performance of your own
application is difficult

• Measuring the performance of a benchmark is not good
enough
– If it's your application you care about, measure your

application

TTTTTThhhhhheeeeee ppppppeeeeeerrrrrriiiiiillllllssssss ooooooffffff ssssssiiiiiimmmmmmuuuuuullllllaaaaaatttttteeeeeedddddd wwwwwwoooooorrrrrrkkkkkkllllllooooooaaaaaaddddddssssss

• Generating a “real” workload can be hard in a test
environment

• Tuning a system against a simulated workload can be
misleading
– Example: garbage collection can be very sensitive to the

exact distribution of object sizes and the pattern of
connections between objects

– Example: Insufficient variation in data can lead to artificially
warm caches and disguise I/O bottlenecks

• Care must be taken to ensure simulated workloads are
sufficiently realistic

TTTTTThhhhhheeeeee ppppppeeeeeerrrrrriiiiiillllllssssss ooooooffffff iiiiiinnnnnnffffffeeeeeerrrrrreeeeeennnnnncccccceeeeee

• The performance metrics from performance tools cannot
tell you how well your application is performing
• Pause times cannot tell you what your application response

times are
• Time in GC cannot tell you how fast your application is running

• Generational garbage collectors often use more of the CPU but
give better throughput, and shorter maximum response times

• A profiler may show more time is being spent in a method, but
that may be because a change prompted the JIT to inline other
methods, so total time may be reduced

HHHHHHoooooowwwwww wwwwwweeeeeellllllllllll iiiiiissssss yyyyyyoooooouuuuuurrrrrr aaaaaapppppppppppplllllliiiiiiccccccaaaaaattttttiiiiiioooooonnnnnn ppppppeeeeeerrrrrrffffffoooooorrrrrrmmmmmmiiiiiinnnnnngggggg??????

• The simplest and most effective way to measure
performance is to invoke System.currentTimeMillis() in a
test harness to time properties of interest

• Performance can be very variable, so measurements must
be repeated

• Allow unmeasured warm-up period
– (If that's how the application will run)
– Allows caches to be populated and methods to be compiled

EEEEEExxxxxxcccccceeeeeeppppppttttttiiiiiioooooonnnnnn:::::: UUUUUUsssssseeeeee GGGGGGCCCCCC ttttttoooooo mmmmmmeeeeeeaaaaaassssssuuuuuurrrrrreeeeee
tttttthhhhhhrrrrrroooooouuuuuugggggghhhhhhppppppuuuuuutttttt

– Rate of garbage
collection = rate of
garbage generation

– If the code doesn't
change, generating
garbage faster is
good, because
garbage is a side
effect of work

• IBM Monitoring and
Diagnostic Tools for
Java – GC and
Memory Visualizer
reports the rate of
garbage collection

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Assessing performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

FFFFFFiiiiiixxxxxxiiiiiinnnnnngggggg ppppppeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee pppppprrrrrroooooobbbbbblllllleeeeeemmmmmmssssss

• Performance problems are caused by limited resources
• Which resource is limited?
• Applications may be

– CPU bound
– I/O bound
– Space bound
– “Lock bound” (contended)

HHHHHHoooooowwwwww ttttttoooooo ddddddeeeeeecccccciiiiiiddddddeeeeee wwwwwwhhhhhhiiiiiicccccchhhhhh iiiiiitttttt iiiiiissssss??????

• CPU bound
– CPU utilisation consistently high

• I/O bound
– CPU utilisation not consistently high

• Lock bound
– CPU utilisation not consistently high

• Space bound
– Any of the above!

• These heuristics aren't precise enough, so tools are
required to guide diagnosis

IIIIIIBBBBBBMMMMMM PPPPPPeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee TTTTTToooooooooooollllllssssss

• IBM provides a number of tools to identify and fix
performance bottlenecks

• The tools are all freely available
• Most – but not all – are targeted for IBM JVMs only
• Tools available from

– alphaWorks (alpha tools)
– IBM Support Assistant (fully supported tools)

IIIIIIBBBBBBMMMMMM SSSSSSuuuuuuppppppppppppoooooorrrrrrtttttt AAAAAAssssssssssssiiiiiissssssttttttaaaaaannnnnntttttt ((((((IIIIIISSSSSSAAAAAA))))))

• Hosting for Serviceability
Tools across product
families

• Automatic problem
determination data
gathering

• Assist with opening PMR’s
and working with IBM
Support

• Documentation:
– Aggregated search across

sources
– Regular updates to

Diagnostics Guide

hhhhhhttttttttttttpppppp::::::////////////wwwwwwwwwwwwwwwwww......iiiiiibbbbbbmmmmmm......ccccccoooooommmmmm/so/so/so/so/so/soffffffttttttwwwwwwaaaaaarrrrrreeeeee//////susususususuppppppppppppoooooorrrrrrtttttt//////iiiiiisasasasasasa

http://www.ibm.com/software/support/isa

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Identifying performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

DDDDDDiiiiiiaaaaaaggggggnnnnnnoooooossssssiiiiiinnnnnngggggg ssssssppppppaaaaaacccccceeeeee bbbbbboooooouuuuuunnnnnndddddd aaaaaapppppppppppplllllliiiiiiccccccaaaaaattttttiiiiiioooooonnnnnnssssss

• Space bound can be disguised as CPU bound
– Java has garbage collection
– If the GC is running excessively it will hog the CPU

• Space-bound can also be disguised as I/O bound
– Excessive “in use” footprint can cause

• Paging
• Cache misses

• Enabling verbose garbage collection can quickly identify
or rule out space issues
– On IBM platforms, use -Xverbose:gc or -Xverbosegclog:$file

to write directly to a file
– Logs may be analyzed with a verbose gc analysis tool

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Identifying performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

20

TTTTTThhhhhheeeeee GGGGGGCCCCCC aaaaaannnnnndddddd MMMMMMeeeeeemmmmmmoooooorrrrrryyyyyy VVVVVViiiiiissssssuuuuuuaaaaaalllllliiiiiizzzzzzeeeeeerrrrrr

• IBM Monitoring and Diagnostic Tools for Java – GC and
Memory Visualizer (formerly known as EVTK) is a verbose
GC analysis tool

• Handles verbose GC from all versions of IBM JVMs
– 1.4.2 and lower
– 5.0 and higher
– zSeries
– iSeries
– WebSphere real time

• … and Solaris platforms
• … and HP-UX platforms

GGGGGGCCCCCC aaaaaannnnnndddddd MMMMMMeeeeeemmmmmmoooooorrrrrryyyyyy VVVVVViiiiiissssssuuuuuuaaaaaalllllliiiiiizzzzzzeeeeeerrrrrr ccccccaaaaaappppppaaaaaabbbbbbiiiiiilllllliiiiiittttttiiiiiieeeeeessssss

• Analyses heap usage, heap size, pause times, and many
other properties

• Provides tuning recommendations
• Compares multiple logs in the same plots and reports
• Many views on data

– Reports
– Graphs
– Tables

• Can save data to
– HTML reports
– JPEG pictures
– CSV files

22

TTTTTThhhhhheeeeee GGGGGGCCCCCC aaaaaannnnnndddddd MMMMMMeeeeeemmmmmmoooooorrrrrryyyyyy VVVVVViiiiiissssssuuuuuuaaaaaalllllliiiiiizzzzzzeeeeeerrrrrr
HHHHHHeeeeeeaaaaaapppppp VVVVVViiiiiissssssuuuuuuaaaaaalllllliiiiiizzzzzzaaaaaattttttiiiiiioooooonnnnnn

Heap occupancy

Pause times

23

TTTTTThhhhhheeeeee GGGGGGCCCCCC aaaaaannnnnndddddd MMMMMMeeeeeemmmmmmoooooorrrrrryyyyyy VVVVVViiiiiissssssuuuuuuaaaaaalllllliiiiiizzzzzzeeeeeerrrrrr ------ CCCCCCoooooommmmmmppppppaaaaaarrrrrriiiiiissssssoooooonnnnnn &&&&&&
AAAAAAddddddvvvvvviiiiiicccccceeeeee

Compare runs…

Performance advisor…

WWWWWWhhhhhhaaaaaatttttt ddddddooooooeeeeeessssss ggggggaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee ccccccoooooolllllllllllleeeeeeccccccttttttiiiiiioooooonnnnnn tttttteeeeeellllllllllll yyyyyyoooooouuuuuu??????

• High heap occupancy indicates an application is likely space
bound
– Increasing heap size or lowering application footprint should

improve performance

• If GC is using more than 10% or 20% of the CPU action may
be required
– Alternate choice of policy
– GC tuning

DDDDDDoooooonnnnnn''''''tttttt ffffffoooooorrrrrrggggggeeeeeetttttt nnnnnnaaaaaattttttiiiiiivvvvvveeeeee mmmmmmeeeeeemmmmmmoooooorrrrrryyyyyy

• Java applications use – and may leak - native memory
• Low occupancy is no guarantee an application is not space

bound.
• Native memory use is not logged in verbose GC
• Memory pressure and even OutOfMemory errors may occur

even though there is lots of room in the heap
• Use platform-specific tools

– Windows perfmon tool
– Linux ps
– AIX vmstat

WWWWWWhhhhhheeeeeennnnnn sssssshhhhhhoooooouuuuuulllllldddddd yyyyyyoooooouuuuuu ssssssiiiiiizzzzzzeeeeee tttttthhhhhheeeeee hhhhhheeeeeeaaaaaapppppp??????
• If performance is important

– Fixing the heap size prevents the JVM shrinking the heap when
the memory usage drops and then having to re-grow when it
increases again

– Try -Xmaxf=100 option to allow growth but prevent shrinking

• If the application uses a lot of memory
– Most JVMs will avoid using all the memory on a box!
– The IBM JVM has an upper limit of half the physical memory
– If the application needs more than this intervention is required

DDDDDDeeeeeemmmmmmoooooonnnnnnssssssttttttrrrrrraaaaaattttttiiiiiioooooonnnnnn:::::: UUUUUUssssssiiiiiinnnnnngggggg tttttthhhhhheeeeee GGGGGGCCCCCC aaaaaannnnnndddddd MMMMMMeeeeeemmmmmmoooooorrrrrryyyyyy
VVVVVViiiiiissssssuuuuuuaaaaaalllllliiiiiizzzzzzeeeeeerrrrrr ttttttoooooo ssssssiiiiiizzzzzzeeeeee tttttthhhhhheeeeee hhhhhheeeeeeaaaaaapppppp......

• Sample
application
allocates
many
objects,
keeps some,
and
regularly
throws some
away

TTTTTTrrrrrryyyyyy oooooouuuuuutttttt vvvvvvaaaaaarrrrrriiiiiioooooouuuuuussssss hhhhhheeeeeeaaaaaapppppp ssssssiiiiiizzzzzzeeeeeessssss

• Some will
be
obviously
bad

• Most will
seem fine

• Consider summary
data and plotted data

UUUUUUsssssseeeeee tttttthhhhhheeeeee GGGGGGCCCCCC aaaaaannnnnndddddd MMMMMMeeeeeemmmmmmoooooorrrrrryyyyyy VVVVVViiiiiissssssuuuuuuaaaaaalllllliiiiiizzzzzzeeeeeerrrrrr ttttttoooooo ddddddeeeeeecccccciiiiiiddddddeeeeee

TTTTTThhhhhheeeeee ttttttrrrrrraaaaaaddddddeeeeee------ooooooffffffffffff bbbbbbeeeeeettttttwwwwwweeeeeeeeeeeennnnnn hhhhhheeeeeeaaaaaapppppp aaaaaannnnnndddddd ppppppeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee

777777ssssss444444%%%%%%111111222222%%%%%%888888000000000000 MMMMMMBBBBBB

777777ssssss444444%%%%%%222222444444%%%%%%444444000000000000 MMMMMMBBBBBB

777777ssssss999999%%%%%%444444999999%%%%%%222222000000000000 MMMMMMBBBBBB

888888ssssss111111444444%%%%%%666666999999%%%%%%111111444444000000 MMMMMMBBBBBB

999999ssssss222222000000%%%%%%777777555555%%%%%%111111333333000000 MMMMMMBBBBBB

999999ssssss333333777777%%%%%%888888222222%%%%%%111111222222000000 MMMMMMBBBBBB

333333000000ssssss777777777777%%%%%%888888999999%%%%%%111111111111000000 MMMMMMBBBBBB

OOOOOOuuuuuutttttt OOOOOOffffff MMMMMMeeeeeemmmmmmoooooorrrrrryyyyyy ccccccrrrrrraaaaaasssssshhhhhh111111000000000000 MMMMMMBBBBBB

TTTTTTiiiiiimmmmmmeeeeee ttttttaaaaaakkkkkkeeeeeennnnnnGGGGGGCCCCCC oooooovvvvvveeeeeerrrrrrhhhhhheeeeeeaaaaaaddddddOOOOOOccccccccccccuuuuuuppppppaaaaaannnnnnccccccyyyyyyHHHHHHeeeeeeaaaaaapppppp ssssssiiiiiizzzzzzeeeeee

WWWWWWhhhhhhaaaaaatttttt''''''ssssss tttttthhhhhheeeeee rrrrrriiiiiigggggghhhhhhtttttt hhhhhheeeeeeaaaaaapppppp ssssssiiiiiizzzzzzeeeeee??????

• It depends!
• What other demands are there for heap on the system?
• Larger heaps generally give better performance

– But ...
• Very large heaps give diminishing returns
• Pause times will generally be longer with larger heaps and may

be very long with enormous heaps
• Some policies are more sensitive than others to heap size

• As a rule of thumb, aim for no more than 70% used heap
(occupancy)

• 50% used heap is a good balance between improving
performance and avoiding waste

AAAAAAsssssssssssseeeeeessssssssssssiiiiiinnnnnngggggg FFFFFFoooooooooooottttttpppppprrrrrriiiiiinnnnnntttttt

• After you've sized the heap, is the footprint what you
expect?

• If not, why not?
– Excessive caching
– Excessive cloning
– Bloated object structures

• Solution may be to reduce application's memory usage
rather than increase the heap size

• Sometimes the solution may be to increase application's
memory usage if it's using less than expected
– “If my footprint's that small then I can cache all that stuff and

speed up my application”

DDDDDDiiiiiiaaaaaaggggggnnnnnnoooooossssssiiiiiinnnnnngggggg ffffffoooooooooooottttttpppppprrrrrriiiiiinnnnnntttttt iiiiiissssssssssssuuuuuueeeeeessssss

• Understanding leaks and excessive footprint needs an
understanding of what objects are on the heap
– Take a heap or system dump
– Heap dumps are triggered automatically on

OutOfMemoryErrors
– Dumps may be triggered with ctrl-break (windows) or kill -3

(unix)
– Dumps may also be triggered on method entry and other

events
– Dumps may also be triggered programmatically

• Once you have a dump, the dump can be analysed to
discover what's holding onto memory

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Identifying performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

35

MMMMMMDDDDDDDDDDDD444444JJJJJJ

• Java Memory Analysis tool
– Help explain / track down OutOfMemoryError
– Footprint analysis
– Performance problems when object use

• 2 modes of use
– Single snapshot – to visualize a given heap
– Delta mode – to track growth between 2 points in time

• Input data types supported
– IBM Portable Heap Dump (heapdump.phd)
– IBM Text heap dump (heapdump.txt)
– HPROF heap dump format (hprof.txt)

• Available through IBM Support Assistant

36

37

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Identifying performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

DDDDDDiiiiiiaaaaaaggggggnnnnnnoooooossssssiiiiiinnnnnngggggg CCCCCCPPPPPPUUUUUU bbbbbboooooouuuuuunnnnnndddddd aaaaaapppppppppppplllllliiiiiiccccccaaaaaattttttiiiiiioooooonnnnnnssssss

• Code is being invoked more than it needs to be
– Easily done with event-driven models

• An algorithm is not the most efficient
– Easily done without algorithms research!

• Fixing CPU bound applications requires knowledge of what
code is being run
– Identify methods which are suitable for optimisation

• Optimising methods which the application doesn't spend time in
is a waste of your time

– Identify methods where more time is being spent than you
expect

• “Why is so much of my profile in calls to this trivial little
method?”

MMMMMMeeeeeetttttthhhhhhoooooodddddd ttttttrrrrrraaaaaacccccceeeeee aaaaaannnnnndddddd pppppprrrrrrooooooffffffiiiiiilllllliiiiiinnnnnngggggg

• There are two ways to work out what code your
application is doing
– Trace
– Profiling

• Trace
– Does not require specialist tools (but is better with them)
– Records every invocation of a subset of methods
– Gives insight into sequence of events
– In the simplest case, System.out.println

• Profiling
– Requires specialist tools
– Samples all methods and provides statistics

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Identifying performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

IIIIIIBBBBBBMMMMMM JJJJJJaaaaaavvvvvvaaaaaa mmmmmmeeeeeetttttthhhhhhoooooodddddd ttttttrrrrrraaaaaacccccceeeeee

Not overhead-free, but
lower overhead than
equivalent function
implemented in Java

• Traces any Java methods
• Instrumentation-free, and no extra code required
• No fancy GUI, but very very powerful
• Detailed information:

– Entry and Exit points, with thread information and microsecond
time stamps

CCCCCCoooooonnnnnnttttttrrrrrroooooolllllllllllliiiiiinnnnnngggggg wwwwwwhhhhhhaaaaaatttttt iiiiiissssss ttttttrrrrrraaaaaacccccceeeeeedddddd

• Can select methods on package, class or method name:
• Package: methods={java/lang/*}
• Class: methods={java/lang/String.*}
• Method: methods={HelloWorld.main}
• Also ! operator and combination allowed:

– methods={java/lang/*,!java/lang/String*}

• Possible to create huge volume of output, so use sensible
method specifications!

TTTTTTrrrrrriiiiiiggggggggggggeeeeeerrrrrriiiiiinnnnnngggggg eeeeeevvvvvveeeeeennnnnnttttttssssss

• Can request certain actions occur when chosen methods are
entered or exited

• Actions such as coredump, javadump, etc.
• Actions such as enabling trace!
• Can cause action to occur on n’th instance of trigger

condition
• Can specify how many times the action occurs
• Multiple trigger types and actions can be specified

UUUUUUssssssiiiiiinnnnnngggggg ttttttrrrrrriiiiiiggggggggggggeeeeeerrrrrriiiiiinnnnnngggggg ttttttoooooo ttttttrrrrrraaaaaacccccceeeeee oooooonnnnnnllllllyyyyyy ssssssoooooommmmmmeeeeee ooooooffffff tttttthhhhhheeeeee ttttttiiiiiimmmmmmeeeeee

• Can start trace suspended, and resume / suspend it on
matching method conditions

• E.g. use start up option –Xtrace:resumecount=1 to start
trace suspended.

• Trigger={method{HelloWorld.main*,resumethis,suspendthis}}
• This will cause the requested tracing to take effect only

inside HelloWorld.main method
• Less work than stepping through in a debugger and creates

a permanent record

SSSSSSuuuuuussssssppppppeeeeeennnnnndddddd ////// rrrrrreeeeeessssssuuuuuummmmmmeeeeee iiiiiinnnnnn aaaaaaccccccttttttiiiiiioooooonnnnnn

47

TTTTTTrrrrrriiiiiiggggggggggggeeeeeerrrrrriiiiiinnnnnngggggg aaaaaannnnnndddddd MMMMMMeeeeeetttttthhhhhhoooooodddddd TTTTTTrrrrrraaaaaacccccceeeeee iiiiiinnnnnn AAAAAAccccccttttttiiiiiioooooonnnnnn

• -Xtrace:print=mt,methods={myapp/MyTime*},resumecount=1,trigger=method

{myapp/MyTime.main,resume,suspend}
21:05:47.992*0x806cb00 mt.3 > myapp/MyTime.main([Ljava/lang/String;)V

Bytecode static method
21:05:47.994 0x806cb00 mt.19 - Static method arguments: ([L@55D8CB98)
21:05:47.994 0x806cb00 mt.0 > myapp/MyTime.<init>()V Bytecode method, This

= 809baec
21:05:47.994 0x806cb00 mt.18 - Instance method receiver: myapp/

MyTime@55D8CBA8 arguments: ()
21:05:47.994 0x806cb00 mt.6 < myapp/MyTime.<init>()V Bytecode method
21:05:47.994 0x806cb00 mt.0 > myapp/MyTime.test()V Bytecode method, This =

809baf0
21:05:47.994 0x806cb00 mt.18 - Instance method receiver: myapp/

MyTime@55D8CBA8 arguments: ()
21:05:48.079 0x806cb00 mt.6 < myapp/MyTime.test()V Bytecode method
21:05:48.079 0x806cb00 mt.9 < myapp/MyTime.main([Ljava/lang/String;)V

Bytecode static method

• Only real time (79ms) is in the call to MyTime.test()

• Could now drill down into MyTime.test()

48

TTTTTTrrrrrriiiiiiggggggggggggeeeeeerrrrrriiiiiinnnnnngggggg aaaaaannnnnndddddd MMMMMMeeeeeetttttthhhhhhoooooodddddd TTTTTTrrrrrraaaaaacccccceeeeee iiiiiinnnnnn AAAAAAccccccttttttiiiiiioooooonnnnnn

• Drill down into MyTime.test():

• Extend scope of methods traced, and reduce scope of tracing into MyTime.test()

• -Xtrace:print=mt,methods={myapp/*},resumecount=1,trigger=method{myapp/
MyTime.test,resume,suspend}

21:07:14.968*0x806cb00 mt.0 > myapp/MyTime.test()V Bytecode method, This =
809baf0

21:07:14.970 0x806cb00 mt.18 - Instance method receiver: myapp/
MyTime@55D8CBA8 arguments: ()

21:07:15.067 0x806cb00 mt.3 > myapp/MyTimer.getTime()V Bytecode static
method

21:07:15.067 0x806cb00 mt.19 - Static method arguments: ()

21:07:15.067 0x806cb00 mt.9 < myapp/MyTimer.getTime()V Bytecode static
method

21:07:15.069 0x806cb00 mt.6 < myapp/MyTime.test()V Bytecode method

OOOOOOtttttthhhhhheeeeeerrrrrr uuuuuusssssseeeeeessssss ooooooffffff ttttttrrrrrraaaaaacccccceeeeee

• Can count tracepoints using
• java -Xtrace:count={tracepoint_selection} Class
• This is almost like a sampling profiler

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Identifying performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

51

DDDDDDiiiiiiaaaaaaggggggnnnnnnoooooossssssiiiiiinnnnnngggggg IIIIII//////OOOOOO------bbbbbboooooouuuuuunnnnnndddddd aaaaaapppppppppppplllllliiiiiiccccccaaaaaattttttiiiiiioooooonnnnnnssssss

• A number of tools may be required to isolate the causes of
I/O delays

• Use the GC and Memory Visualizer to check sweep times
– Sweep times should be very short
– Long sweep times indicate access to memory is slow
– This indicates the application is probably paging

• Use method trace to trace calls to network and disk I/O

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Identifying performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

53

DDDDDDiiiiiiaaaaaaggggggnnnnnnoooooossssssiiiiiinnnnnngggggg lllllloooooocccccckkkkkk bbbbbboooooouuuuuunnnnnndddddd aaaaaapppppppppppplllllliiiiiiccccccaaaaaattttttiiiiiioooooonnnnnnssssss

• Infelicitous synchronization can cause significant application
delays

• IBM provides a tool to quickly diagnose and identify
contended locks
– A contended lock is the opposite of a contented lock!

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Introduction
• Identifying performance problems
• Fixing performance problems

– Performance tools for ...
• Space bound applications

– IBM Monitoring and Diagnostic Tools for Java™ – GC and
Memory Visualizer

– IBM MDD4J
• CPU bound applications

– Method trace
• I/O bound applications
• Lock bound applications

– IBM Lock Analyzer for Java

55

IIIIIIBBBBBBMMMMMM LLLLLLoooooocccccckkkkkk AAAAAAnnnnnnaaaaaallllllyyyyyyzzzzzzeeeeeerrrrrr ffffffoooooorrrrrr JaJaJaJaJaJavvvvvvaaaaaa
• Download from http://www.alphaworks.ibm.com/tech/jla
• JLA provides profiling data on monitors used in Java

applications and the JVM:
– Counters associated with contended locks
– Total number of successful acquires
– Recursive acquires
– Frequency with which a thread had to block waiting on the

monitor
– Cumulative time the monitor was held.
– For platforms that support 3 Tier Spin Locking the following

are also collected
• Number of times the requesting thread went through the inner

(spin loop) while attempting to acquire the monitor.
• Number of times the requesting thread went through the outer

(thread yield loop) while attempting to acquire the monitor.

56

IIIIIIBBBBBBMMMMMM LLLLLLoooooocccccckkkkkk AAAAAAnnnnnnaaaaaallllllyyyyyyzzzzzzeeeeeerrrrrr ffffffoooooorrrrrr JJJJJJaaaaaavvvvvvaaaaaa

WWWWWWhhhhhhaaaaaatttttt ddddddoooooo tttttthhhhhheeeeee bbbbbbaaaaaarrrrrrssssss mmmmmmeeeeeeaaaaaannnnnn??????

• The Lock Analyzer provides very detailed information on
locking and synchronization in the table below the chart

• In most cases the chart will be enough
• The height of the bar indicates how often threads were

blocked waiting for the lock
• The colour of the bar indicates what fraction of the

attempts were unsuccessful

CCCCCCoooooonnnnnncccccclllllluuuuuussssssiiiiiioooooonnnnnnssssss

• Improving application performance starts with identifying
limited resources

• Tools can help fix performance bottlenecks
– Space bound

• GC and Memory Visualizer
• MDD4J

– CPU bound
• Method tracing

– Lock bound
• Lock Analyzer for Java

• The following terms are trademarks of International
Business Machines Corporation in the United States, other
countries, or both:
– IBM
– z/OS
– PowerPC
– WebSphere

• Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both.

• Solaris is a trademark of Sun Microsystems, Inc.
• Intel is a trademarks of Intel Corporation or its subsidiaries

in the United States, other countries, or both

60

AAAAAAnnnnnnyyyyyy QQQQQQuuuuuueeeeeessssssttttttiiiiiioooooonnnnnnssssss??????

