PR A
' R RN
To00¢
“seet

A XY L.

Java Performance Tools

Dr Holly Cummins
Tooling Technical Lead
Java Technology Centre
IBM

cumminsh@uk.ibm.com




FE
'R B AN
To00
XYY
‘Nget

Outline

* Introduction
 Ildentifying performance problems

» Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J
« CPU bound applications
— Method trace
* 1/0 bound applications
* Lock bound applications
— IBM Lock Analyzer for Java




PR A
" 990
LN ]

9@
o0t
A XY L.

9

=

'd

hen would you use a performance

 When you have a performance problem!




FE
'R B AN
To00
XYY
‘Nget

What's a performance prob

* It doesn't go as fast as you think it ought to
* It doesn't go as fast as your users demand

It starts out fine and then after some period doesn't go
as fast as it used to

* It hangs
— This is a quite severe example of a performance problem




R B
'R X X N
“920901
“eneet
‘Ygef

Outline

* Introduction
* Assessing performance problems

» Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J
« CPU bound applications
— Method trace
* 1/0 bound applications
* Lock bound applications
— IBM Lock Analyzer for Java




g B W WY
N N N N
“92001
“nee0t

pe”

Assessing performance prok

Performance must be measured before problems can be
fixed

— Otherwise you risk making things worse with a clever fix

We don't provide a tool for this!

— A performance tool cannot do your performance
measurement for you

Performance measurement must be based on your
application and your quality of service requirements

— Throughput
— Response times

* Mean response time
* 90th percentile response time

2 response time




F R A
'R X X N
“920901
“eneet

RYY L.

The perils of benchmarks

Sometimes measuring the performance of your own
application is difficult

Measuring the performance of a benchmark is not good
enough

— If it's your application you care about, measure your
application




g B W WY
' N X N
“Te001
“nee0t

oot

The perils of simulated workloac

Generating a “real” workload can be hard in a test
environment

Tuning a system against a simulated workload can be
misleading
— Example: garbage collection can be very sensitive to the

exact distribution of object sizes and the pattern of
connections between objects

— Example: Insufficient variation in data can lead to artificially
warm caches and disguise 1/0 bottlenecks

Care must be taken to ensure simulated workloads are
sufficiently realistic




g B W WY
' N X N
“92001
“nee0t

oot

The perils of inference

* The performance metrics from performance tools cannot
tell you how well your application is performing

- Pause times cannot tell you what your application response
times are

* Time in GC cannot tell you how fast your application is running
- Generational garbage collectors often use more of the CPU but
give better throughput, and shorter maximum response times
- A profiler may show more time is being spent in a method, but
that may be because a change prompted the JIT to inline other

methods, so total time may be reduced




R B
N N N N
“92001

How well is your application pertor

The simplest and most effective way to measure

performance is to invoke System.currentTimeMillis() in a
test harness to time properties of interest

Performance can be very variable, so measurements must
be repeated

Allow unmeasured warm-up period
— (If that's how the application will run)
— Allows caches to be populated and methods to be compiled




F R A
" 999
XX X
“eeet

‘gef

th

setl

— Rate of garbage
collection = rate of
garbage generation

— If the code doesn't
change, generating
garbage faster is
good, because
garbage Is a side
effect of work

£

rrences cleared

* IBM Monitoring and
Diagnostic Tools for
Java — GC and
Memory Visualizer
reports the rate of

-

roughput

wommendation

Tuning recommendation

The mean cccupancy is 10% . This is a bil low, so you hawve room o =ave space by lowering
ithe heap size will probably degrade overall applicalion performance slighily bul im prove ps

The memory usage of the applicalion does nod indicatke any obvious leaks.

Summary

Mean inkerval betwean colleclions (sec) 0.0z
Largest memory requesi {byles) 415

Mean heap unusable due o fragmeniaiion (ME) 0.0
Allocation failure count 12800

SC Mode opthrupul
Proporion of ime speni in garbage colleclion pauses (%) |6.59
Concurrent collection count o

Proporion of fime speni unpausad (%)

23.41

T0mber of colleclions

Rate of garbage colleclion

Wean garbage colleclion pauss (ms)

Ml.'r.jng

Mean Minimum Maximum Total
number (#) | number (#) | number (#) | number (#)
TE23 B84 7735 1057 15277

o garbage COlleCt|On vgco |Hep0rt|| Data i Line plc:t! Structured Data Displayerl




R B
'R X X N
“920901
“eneet
‘Ygef

Outline

* Introduction
» Assessing performance problems

* Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J

« CPU bound applications
— Method trace

* |/0 bound applications

* Lock bound applications
IBM Lock Analyzer for Java




R B
'R X X N
“920901
“eneet
‘gt

Fixing performance problems

* Performance problems are caused by limited resources
* Which resource is limited?

 Applications may be
— CPU bound
— 1/0 bound
— Space bound
— “Lock bound” (contended)




F R A
" D99
“920901
“eeet

‘Nget

How to decide which 1t Is:

CPU bound
— CPU utilisation consistently high

/0 bound
— CPU utilisation not consistently high

Lock bound
— CPU utilisation not consistently high

Space bound
— Any of the above!

These heuristics aren't precise enough, so tools are
required to guide diagnosis




F R A
" D99
“920901
“eeet

REY X

erformance Tools

IBM provides a number of tools to identify and fix
performance bottlenecks

The tools are all freely available
Most — but not all — are targeted for IBM JVMs only

Tools available from
— alphaWorks (alpha tools)
— IBM Support Assistant (fully supported tools)




g B W WY
N N N N
“92001
“nee0t

pe”

IBM Support Assistant

Hosting for Serviceability
Tools across product
families

Automatic problem
determination data
gathering

Assist with opening PMR’s
and working with IBM
Support

Documentation:

— Aggregated search across
sources

ndates to

= 1BM Support Assistant

Support Assistant

Welcome to IBM Support Assistant

IBM Support Assistant is a local serviceability workbench that helps you resolve your product challenges. Use
the Updater component to add products and tools that are important to you. Then use the Search, Product

Information, Tools, and Service components to help you find answers and solve problems.

Submit a problem report to IBM expedited with
automatic data collection

I Updater

dd IBM products and tools to IBM Support
ssistant

@ Product Information

Quickly find the right IBM site for your product questions i

(A
ﬁ Tools

estigate product problems

Inw using specialized analysis
tools



http://www.ibm.com/software/support/isa

R B
'R X X N
“920901
“eneet
‘Ygef

Outline

* Introduction
 Identifying performance problems

* Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J

« CPU bound applications
— Method trace

* |/0 bound applications

* Lock bound applications
IBM Lock Analyzer for Java




w - w
# ®
» @~
i1 " B
Y L

Diagnosing space bound applicatior

« Space bound can be disguised as CPU bound
— Java has garbage collection
— If the GC is running excessively it will hog the CPU

« Space-bound can also be disguised as I/0 bound

— Excessive “in use” footprint can cause
* Paging
« Cache misses

* Enabling verbose garbage collection can quickly identify
or rule out space issues

— On IBM platforms, use -Xverbose:gc or -Xverbosegclog:$file
to write directly to a file

— Logs may be analyzed with a verbose gc analysis tool




R B
'R X X N
“920901
“eneet
‘Ygef

Outline

* Introduction
 Identifying performance problems

* Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J

« CPU bound applications
— Method trace

* |/0 bound applications

* Lock bound applications
IBM Lock Analyzer for Java




FE
'K A X B
“e09001

MY Y L

RE T K,

The and Memory Visualizer

IBM Monitoring and Diagnostic Tools for Java — GC and
Memory Visualizer (formerly known as EVTK) is a verbose
GC analysis tool

Handles verbose GC from all versions of IBM JVMs

— 1.4.2 and lower

— 5.0 and higher

— zSeries

— 1Series

— WebSphere real time

--- and Solaris platforms
--- and HP-UX platforms




R B
'R N X N
"900¢
e

'GC and | emory Visualizer capabili

Analyses heap usage, heap size, pause times, and many
other properties

Provides tuning recommendations

Compares multiple logs in the same plots and reports

Many views on data
— Reports

— Graphs
— Tables

Can save data to
— HTML reports




F R A

Extensible Verbose Toolkit
File Edit Parsers Postprocessors Displayers VGC Data View Help

Free heap (after collection) and Heap size
1621

1379

1138

896

heap (MB)

655

413

171

0.0 0.03 0.05 0.08 0.1
time (hours)

013

0.15

umavgpause.vgc‘ Reporl| Data {Elne p\mJ

Heap occupancy

Extensible Verbose Toolkit

File Edit Parsers Postprocessors Displayers VGC Data View Help

O Data set 1 EE]

Pause times (including exclusive access)
2.63

2.19

1.75

131

time (sec)

0.88

0.44

0.0

0.0 0.39 0.77 1.16 1.55
time (hours)

193

2.32

genconwithsametimestamps.vge | Report ‘ Data I Line p\ot]

XAxis———
hours

Normalise
Minimum
0.0 hours
e 7 ——
Maximum
2.32 hours

|

Reset Axes

1Y Axis

?

AV

i
<]

Normalise
Minimum

0.06 sec
Maximum

2.57 sec

Pause times

22




File Edit Parsers Postprocessors Displayers VGC Data View Help

O Dataset1 ¥

510

Pause times (not including exclusive access)

425

340

255

time (ms)

170

85.01

0.0

T
L

5

di

i

0.0

204

408 612 816
time from start (sec)

1019

defaultlspecjbboptavgpause-0.vge ‘ Report| Data lee plot] defaultlspecjbboptthruput-0.vge

ompadare runs---

File Edit WVGC Pause Data

VGC Data VGC Heap Data WView Help

Tuning recommendation

3 1o heap size was quite vansbie This will be caising uRnecessary compaction. |f yeur appicatior's warkioad is relathvely steacy, yeu should consider foxdng the hesp
size. This should improve performance in twa ways; changing the heap size is rather expansive for the garbage collector because it must compact first, and fewer
collections will be requirsd if your application is NOt running in a heap which is too small.

3 1.1 ane poir ep6a chiects were queved for finslization. Using finalizers & not recommended 25 it can skow garbage collsction and cause wasted space in the heap,
Consider reviewing your application for occurences of the finaize() method.

& the mean occupancy s 55%. This is high, sa you may improve appication perfarmance by increasing your heap sire. Increasing the heap size should reduce the
garhage callection overhead from its curment reported level of 496

% = arbage colection s causing some large pauses. The largest pause was 8502 ms. This may affect san i s & concern then a
switch of palicy or reduction in heap size may be helpful,

& The garhage collector tried to allocate fram the pinned free list and failed 17 times. Consider increasing or setting the -Xp command fine parameter {the poluster sizes).

% The garhage callector increasad the heap 15 times. Consider increasing the minimum heap size {with -ms) to swvoid the need for heap expanssons.

1 the number of collections increased by 4,800% in the last third of the log compared ta the middie third, Howewver, the change in the heap usage was 036, which
suggests that an increass in apphcation activty or fragmentation rather than a memany lesk may be the problem. If the workload is not constant then the change in the
frequency of collections may ba nothing to wany about.

I The recommendad command fine is -ms 10241 -m 1500m -XpE2K, 4K SXmant0, 1 -xiaration. 4

Summary
Mean garhage collaction pause (ms) 2385
Praportion of time spent in garbage collection pauses (96) | 4.78
‘Mumber of collections 1730
Langest memory request (bytes) 5224
tean imerval between collections {minues) asa
Fropartion of time spent unpaused (36} 5.2
Allocation fasiure count 1738
Farced collection count a
&C Mode aptthruput
Mean heap unusahbie due to fragmentation {MB) 389
Cancument collection count ]
Full callections a
Rate of garhage callsction 213,102 MB/mimAes
Heap size

haaan Minimum | Maximum | Total

hasp (mB) | heap (Me) | heap (ME) | heap (i)

1429 =80 1500 2485752

[4]

' agc txt|Report| Tabbed data | Line plot| Structured data |




L
L4
&

[ 4

‘What does garbage collection tell you

R B
'R N X N
"900¢
e

E

« High heap occupancy indicates an application is likely spax :
bound

— Increasing heap size or lowering application footprint should
improve performance

« If GC is using more than 10% or 20% of the CPU action may
be required

— Alternate choice of policy

— GC tuning




R B
N N N N
“92001
“nee0t

BY Y N

Don't forget native memory

Java applications use — and may leak - native memory

Low occupancy is no guarantee an application is not space
bound.

Native memory use is not logged in verbose GC

Memory pressure and even OutOfMemory errors may occur
even though there is lots of room In the heap

Use platform-specific tools
— Windows perfmon tool

— Linux ps
— AlIX vmstat




g B W WY
N N N N
“92001
“nee0t

pe”

Whe_r_nnshuld you size the heap?

 |f performance is important

— Fixing the heap size prevents the JVM shrinking the heap when
the memory usage drops and then having to re-grow when it
increases again

— Try -Xmaxf=100 option to allow growth but prevent shrinking
 If the application uses a lot of memory

— Most JVMs will avoid using all the memory on a box!

— The IBM JVM has an upper limit of half the physical memory

— If the application needs more than this intervention is required




R B
" 990

D

o @
Lo Visualizer t the h
|sua izer to size the eap.
=0
 Sample =
. 4 package com.ibm. sample; =
appllcatlon import java.util.Random;
allocates =/
¥ A class which holds objects in a hashmap
ma ny ¥ without ever remowving them and
) ¥ therefore leaks memory.
objects, ‘/
public class Allocator
{
keeps SOME, private static final int K = 1024;
and private Object[] things = new Object[1000]; 3
= public static void main (String[] args) {
regu la rly new Allocator().allocate();
throws some )
public void allocate() {
away int allocated = ©;
while (allocated = 100%K*K) {
final int[] thing = new int[new Random({).nextInt(50%*K)];
int index = new Random({).nextInt(things.length);
things[index] = thing;
allocated += things.length;

monstrat




R B
'R X X N
“920901
“eneet
‘Ygef

 Some will
be
obviously
bad

e Most will
seem fine

| = cumminsh@grizzly:~/projects/g:

[cumminsh@grizzly allocator]s I

ﬁy out various hear

'3§£3

File Edit Wiew Terminal Tabs Help

[cumminsh@grizzly allocator]$ heap=100

[cumminsh@grizzly allocator]s java -Xwverbosegclog:allocators{heap}.vgc -Xms%{hea
pym -Zmxs{heap}m -cp bin com.ibm.sample.Allocator

JVMDUMPEOG6L Processing Dump Event "uncaught", detail "java/Llang/0QutOfMemoryError
" - Please Wait.

JVMDUMPEEYI JVM Requesting 5Snap Dump using ‘/home/cumminsh/projects/garbagecolle
ction/javazone-workspace/allocator/Snapf0el.20070817.153626.20793.trc’
JVMDUMPB10I Snap Dump written to Shome/cumminsh/projects/garbagecollection/javaz
one-workspace/allocator/Snapfeel.20070817.153626.20793.trc

JVMDUMPEOTI JVM Requesting Heap Dump using '/home/cumminsh/projects/garbagecolle
ction/javazone-workspace/allocator/heapdump.20070817.153626.20793.phd"
JVMDUMPB10I Heap Dump written to Jhome/fcumminsh/projects/garbagecollection/javaz
one-workspace/allocator/heapdump.20070817.153626.20793 . phd

JVMDUMPEOYI JVM Requesting Jawa Dump using ‘/home/cumminsh/projects/garbagecolle
ction/javazone-workspacesallocator/javacore.20070817.153626.20793 . txt"’
JVMDUMPG12E Error in Jawva Dump: /home/cumminsh/projects/garbagecollection/javazo
ne-workspace/allocator/javacore.20078817.153626.20793 . txt

JVMDUMPE13I Processed Dump Event "uncaught", detail "java/lang/0utOfMemoryError”

Exception in thread "main" java.lang.0OutOfMemoryError
at com.ibm.sample.Allocator.allocate(Allocator. java:2l)
at com.ibm.sample.Allocator.main({Allocator.java:1s)

File Edit VWiew Terminal Tabs Help [cumminsh@grizzly allocator]s [

lrﬂﬁﬂmg“

D

(4] m |

[cumminsh@grizzly allocator]s heap=200
[cumminsh@grizzly allocator]$ java -Xverbosegclog:allocator$s{heap}.vgc -Xms3{hea
pim -XmxS{heap}m -cp bin com.ibm.sample.Allocator

IC

(afl m |



SE

the GC and Memory Visualizer to de

Free heap (after collection)

. 118
« Consider summary 1
1':*%'-"‘-*-,’_-' ..l.""l\"'ﬁ ';I;"‘"'i;‘f;'““
data and plotted data L i
7848
E
2 5877
o
m
o
=
3942
Summary : v HL gk
19 71 ﬁu'r-‘-’hﬁ-!’h}’h -*i'-”'?"“‘*-ﬁ"{ Flf
Variant h10 h1- s KL ] - " SO (N
arian ML P 8 -uf'dgﬁ:!'h-'f.-"*;f"" h*.-rﬁ"‘"..'...'a‘!"gﬂ'l ,a,-g‘i"'—‘i-u_uf'!-ﬁih-.r" ”-*{___,:‘-‘fj""‘-'%r""i-.ﬁ’-. i A
Mean inkerval betwesn colleclions (sec) 0.04 001 i : i i
Largesi memory request { bykes) 204302 204816 0.0 I
0.0 522 10.43 15 .65 20.86
Mean heap unu=able due o fragmentation (ME) 3.36 G6.59 :
time from start (sec)
Allocation failure count i 2126
SiZ Mode opfthrupul opthrupui opthrupui opthrupul opthruput opthruput
Proporion of fime sp2nl in garbage colleclion pauses (%) [91.36 7a.0 3502 19.4 14.62 2.94
Concurreni callection count 0] 1] 0] (] 0] (]
Proporion of lime speni unpaused (%) 264 220 G S8 206 2538 91.0G6
Forced colleclion count i} 0] i} [u] a [u]
Mumber of collections 5% 2126 724 347 285 112
Rate of garbage collection 123,117 MBisac | 313 827 MBf=ac | 972 552 MBi=ec [ 1,215.701 MB/=ac | 1,294 4561 MBf=ec | 1,416.56 MBf=ac
Mean garbage colleclion pauss (ms) 36.08 1149 E47 466 4.61 G6.27




e
o0 e
LN .
e
The trade-off between heap and performa ce
java

Heap size Occupancy GC overhead |Time taken R p—

100 MB Out Of Memory crash

110 MB 89% 77% 30s

120 MB 82% 37% 9s

130 MB 75% 20% 9s

140 MB 69% 14% 8s

200 MB 49% 9% 7s

400 MB 24% 4% 7s




g B W WY
N N N N
“92001
“nee0t

pe”

What's the right heap size?

It depends!
What other demands are there for heap on the system?

Larger heaps generally give better performance

— But ..
» Very large heaps give diminishing returns

» Pause times will generally be longer with larger heaps and may
be very long with enormous heaps

* Some policies are more sensitive than others to heap size

As a rule of thumb, aim for no more than 70% used heap
(occupancy)

50% used heap iIs a good balance between improving
performance and avoiding waste




g B W WY
" 9001
“92001

“nee0t
pe”

~ Assessing Footprint

After you've sized the heap, is the footprint what you
expect?

If not, why not?

— Excessive caching

— Excessive cloning

— Bloated object structures

Solution may be to reduce application's memory usage
rather than increase the heap size

Sometimes the solution may be to increase application's
memory usage if it's using less than expected

— “If my footprint's that small then | can cache all that stuff and
speed up my application”




g B W WY
" 9001
“e09001

M EY X
oot

Diagnhosing footprint issues
« Understanding leaks and excessive footprint needs an
understanding of what objects are on the heap

— Take a heap or system dump

— Heap dumps are triggered automatically on
OutOfMemoryErrors

— Dumps may be triggered with ctrl-break (windows) or kill -3
(unix)

— Dumps may also be triggered on method entry and other
events

— Dumps may also be triggered programmatically

* Once you have a dump, the dump can be analysed to
discover what's holding onto memory




FE
'R B AN
To00
XYY
‘Nget

Outline

* Introduction
 Ildentifying performance problems

» Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J
« CPU bound applications
— Method trace
* 1/0 bound applications
* Lock bound applications
— IBM Lock Analyzer for Java




g B W WY
N N N N
“92001
“nee0t

pe”

* Java Memory Analysis tool

— Help explain / track down OutOfMemoryError

everything

— Footprint analysis

s 441 B

— Performance problems when object use ——

 Leak String

2 modes of use ST s | s

miscellaneous

— Single snapshot — to visualize a given heap

= 13MB

— Delta mode - to track growth between 2 poin

* Input data types supported
— IBM Portable Heap Dump (heapdump.phd)

— IBM Text heap dump (heapdump.txt)
— HPROF heap dump format (hprof.txt)

» Available through IBM Support Assistant




- s
® e
e =
.r."
Y

FE
'K A X B
“e09001

) Memory Dump Diagnostic for Java (MDD4J) v2.0.0 Beta - IBM Support Assistant

Support Assistant

Memory Dump Diagnostic for Java

5

. "Explure Context and Contents |Browse

iﬂnalysis Summary

Data structures with larce drops in reach size

I_!‘; #_r| Object type of suspected container | Feach size of the container object | Drop in reach size |
0 java'utilHashtableSEntrv[] 3INB INB

Object Types that contribute most to scrowth in heap size

|_: = ] Suspected Object Type i Growth in number of instances | Growth in Bvies
0 javallang/Integer ' 200,032 3,200,512

1 java‘utilHashtable3HashtableCacheHashEntry 100,036 2,801,008

2 javallang/String 1,858 52,024

3 charf] 1.658 163 666

4 java‘utilHashMapS$Esntry 457 12.796

Packages that contribute most to scrowth in heap size

| | #] Suspected Package | Growth in mumber of instances

0 javalang 202,115
1 java/util 100,692
2 javalio 88
3 sun/misc 48
4 java’net 40

The following suspects are related to the selected suspect:1




-
® e
e =
.4’
o

g B W WY
" 9001
“92001

¥ Memory Dump Diagnostic for Java (MDD4.J) v2.0.0 Beta - IBM Support Assistant

Support Assistant

Memory Dump Diagnostic for Java

::&naly'sis -Summary

IS uspects

ﬁfx_plore tuntext and Contents ,:_

'[ox986800

Find Address

IIBUkaErKE.‘

Go‘ Remove

object in the tree:

=

| The following table shows details of a selected

| 0x4bf7c8 object java‘utilHashtable

|The objects and object references in the primary memory dump can be browsed here in a tree structure. Each
lnode in the tree represents an object in the Java heap._ Its children represent all the outgoing references from that
lobject sorted according to their reach sizes. Its parent is anv one parent object from which there is an outgoing
irefermce to this object. To see the details of any particular object (including all its parents} select a node in the
tree:

. ;l.'.-ﬂ:T-Rou:-t

E [ 0x4bf7cB object javajuti/Hashtable
. B = 0x986800 java/util/HashtablesEntry[]

Addiess: i B [Inxa45810 obiect java/utHashtablesHashtableCacheHashEntr
. . %A object javaj/util/Ha: esHa eCacheHas ¥
G:bfe“ Class java/util HashtableSEntry H [Coxa4saso object java utlHashtable 8HashtableCacheHashEntry
Name - D [oxa4sacn object javajutil/Hashtable $HashtableCacheHashEntry
Number of 100.001 El[lxa%&dﬂ object java utilHashtable 8HashtableCacheHashEntry
children : z |_loxa469 10 object java/uti/Hashtable $HashtableCacheHashEntry
Size (bvtes) - 400,004 [Elﬂxa%gﬁﬂ object java utlHashtable 8HashtableCacheHashEntry
’ || 0xa46930 object java/util/Hashtable sHashtableCacheHashEntry
Total Reach Size 2.799 896 | oxa4s9do object javajutil/Hashtable sHashtableCacheHashEntry
fln'les}' [oxa4sain object java/util/Hashtable SHashtableCacheHashEntry
IACtIDnS _'_j Execute |oxa4saso object java utlHashtable 8HashtableCacheHashEntry
| Parent | 3 | [ oxa4sac0 object javajutil/Hashtable $HashtableCacheHashEntry
Adiacs Parent Ob}em Name [Ioxa4sado object javajutil/Hashtable sHashtableCacheHashEntry

[oxa4sbin object java/utlHashtable SHashtableCacheHashEntry
| Joxa4shso object javajutilHashtable 8HashtableCacheHashEntry
[ oxa4sban object javajutil/Hashtable $HashtableCacheHashEntry
[Ioxa4sbda object javajutil/Hashtable sHashtableCacheHashEntry
[ oxadscin object javautilHashtable $HashtableCacheHashEntry
| Joxa4scs0 object javajutilHashtable $HashtableCacheHashEntry
[ oxa46can object java utilHashtable $HashtableCacheHashEntry
[Ioxa4scdo object javajutil/Hashtable sHashtableCacheHashEntry
[oxa4sd1n object java/utlHashtable SHashtableCacheHashEntry
| Joxa4sdso object javajutilHashtable 8HashtableCacheHashEntry
[ oxa4sdan object javajutil/Hashtable $HashtableCacheHashEntry

o, PSS L NN T N S O e IO

2 e R = 2 e 2 8 3 = 2 o

| €



R B
'R X X N
“920901
“eneet
‘Ygef

Outline

* Introduction
 Ildentifying performance problems

» Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J
« CPU bound applications
— Method trace
* 1/0 bound applications
* Lock bound applications
— IBM Lock Analyzer for Java




g B W WY
» 990
“Te001
“Seoet

L ¥ K.

Diagnosing CPU bound applications (]

* Code is being invoked more than it needs to be
— Easily done with event-driven models

* An algorithm is not the most efficient
— Easily done without algorithms research!

* Fixing CPU bound applications requires knowledge of what
code is being run
— ldentify methods which are suitable for optimisation

» Optimising methods which the application doesn't spend time in
is a waste of your time

— ldentify methods where more time is being spent than you
expect

Is. so much of my profile in calls to this trivial li




FE
'K A X B
“e2001
MEY Y

RE T K,

Method trace and profiling

 There are two ways to work out what code your
application is doing
— Trace
— Profiling
 Trace
— Does not require specialist tools (but is better with them)
— Records every invocation of a subset of methods
— Gives insight into sequence of events
— In the simplest case, System.out.println
 Profiling
— Requires specialist tools

= Samples all methods and provides statistics
REAT INDIAN /Z=\




FE
'R B AN
To00
XYY
‘Nget

Outline

* Introduction
 Ildentifying performance problems

» Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J
« CPU bound applications
— Method trace
* 1/0 bound applications
* Lock bound applications
— IBM Lock Analyzer for Java




F YW N
N N N
29O ¢
oot

-

IBM Java method trace

Traces any Java methods

Instrumentation-free, and no extra code required
No fancy GUI, but very very powerful
Detailed information:

— Entry and Exit points, with thread information and microsecond

time stamps

Not overhead-free, but
lower overhead than
equivalent function
implemented in Java

GREAT INDIAN
DEVELO)P
SUMMIT

= Select Command Prompt

GNP wind2stempsjeluil2dev-20851026>

CinjPwind2stenphjeluid2dev-20051026 >

ConjPwind2stempsjeluild2dev-208510262 java —Rtrace : RSSO HY
21:@3:4@.?81*&x1?39@ﬂ mt.4 > HW.main{[Ljava/lang/String; U Compiled

21:03:48.828 Bx173960 mt.18 { HY.main{[Ljava/lang/String; U Compiled
static method

CingPwind2stenpsjeluid2dev-20051026
G\ wind2stenphjelwid2dev-200851026

40N P wind2stempsjelvil2dev-20851026

GiniPwind2stenpsjeluid2dev-20051026
C:njPwind2stempsjelvil2dev-20851026




FE
'K A X B
“e09001

MY Y L

RE T K,

Controlling what is traced

Can select methods on package, class or method name:
Package: methods={java/lang/*}

Class: methods={java/lang/String.*}

Method: methods={HelloWorld.main}

Also ! operator and combination allowed:
— methods={java/lang/*,!java/lang/String*}

Possible to create huge volume of output, so use sensible
method specifications!



g W WY
' N X N
Te0®(
“eneet

‘gef

Triggering events

Can request certain actions occur when chosen methods are
entered or exited

Actions such as coredump, javadump, etc.
Actions such as enabling trace!

Can cause action to occur on n’th instance of trigger
condition

Can specify how many times the action occurs

Multiple trigger types and actions can be specified




g B W WY
» ®9 0

=
&
&

i

-w -
® e
® e
o0
b o7

Using triggering to trace only some of the

» Can start trace suspended, and resume / suspend it on
matching method conditions

« E.g. use start up option —Xtrace:resumecount=1 to start
trace suspended.

« Trigger={method{HelloWorld.main*,resumethis,suspendthis}}

« This will cause the requested tracing to take effect only
Inside HelloWorld.main method

» Less work than stepping through in a debugger and creates
a permanent record




= Command Prompt
SnJ?wind2stempsjoluwil2dev— 2@@51@25} -
NJPwwind2stempsjo lwil2dev— 2@@51EEE}Jaua —Atrace :print=mnt,.methods=CHY*,com/ibn g
JumAios*)  trigger={method{HY.main,resumethis.suspendthis}? . resumecount=1 HY
21:31:24.703=8x414cBaB8 mt .4 > HH.main{[Ljauaflangfﬂtring;}u Compile
1 static method
21:31:24.7803 Bx414cBabBd mt .1 > comA/ibm/ jums10/ConsolePrintStream. pri
ntln{Ljavaslang/8tring;>U Compiled method, Thiz = 414467aB
21:31:24.783 Bx4i4cBadi [ | > comAibm/jums10/ConsolePrintStream.get
MewlinedString<Ljavaslang-0bject;)Ljavaslang/5tring; Compiled method, This = 414

16788

21:31:24.7803 Bx414cBaBi mt.1 > comAibm/ jums/1i0/ConsolePrintStream. get
MewlinedString(Ljavaslang/0bject;Z)Ljavaslang/String; Compiled method, This = 4
146774

21:31:24_.7803 Bx414cBadi mt .7 < com/ibm/ jum/i0/ConsolePrintStream. get
MewlinedString<Ljavaslang/0bject;Z)Ljavaslang/String; Compiled method
21:31:24.783 Bx414cBadld mt .7 < com/ibm/ jum/io0/ConsolePrintStream.get
= Ew1inedEtring(Ljauaflangfﬂhject;)Ljauaflangfﬂtring; Compiled method

mt .7 £ com/ibm/ jum/i0/ConsolePrintStream.pri

: tln{LJauaflanngtrlng,}U Compiled method
21:31: mt.18 < HY.main<{[Ljavaslang/String;>U Compile




FE
'K A X B
“e09001

-

® e

e =

er

o L
-Xtrace: print=nt, net hods={nmyapp/ WTi me*}, resunecount =1, tri gger=net hod
{myapp/ MyTi me. mai n, resune, suspend}

21:05:47.992*0x806ch00 nt. 3 > myapp/ MyTi me. mai n([Lj ava/l ang/ String;)V
Byt ecode static method

21:05:47.994 0x806chb00 nt .19 - Static method argunents: ([L@5D8CB98)

21:05:47.994 0x806¢ch00 n.o0 > myapp/ WTine.<init>()V Bytecode nmethod, This
= 809baec

21:05:47.994 0x806¢ch00
MyTi me @5D8CBA8 argunents: ()

=
R
)

- Instance nethod receiver: mnmyapp/

21:05:47.994 0x806¢ch00 nt.6 < myapp/ WTine.<init>()V Bytecode nethod

21:05:47.994 0x806¢ch00 n .o > myapp/ WTine.test()V Bytecode nethod, This =
809baf 0

21:05:47.994 0x806¢ch00 nt .18 - Instance nethod receiver: nyapp/

My Ti me@5D8CBA8 arguments: ()
21: 05:48.079 0x806¢ch00
21: 05:48.079 0x806ch00

Byt ecode static nethod

6 < myapp/ WTine.test()V Bytecode met hod
.9 < myapp/ WTi me. mai n([Lj ava/l ang/ String;)V

23

Only real time (79ms) is in the call to MyTime.test()

Could now drill down into MyTime.test()




F R A
" D99
“920901
“eeet

Drill down into MyTime.test():

Extend scope of methods traced, and reduce scope of tracing into MyTime.test()

-Xtrace: print=nt, nmet hods={myapp/*}, resunmecount=1,trigger =net hod{ nyapp/
MyTi me. test, resune, suspend}

21:07:14.968*0x806ch00 n.o > myapp/ WTine.test()V Bytecode nethod, This =
809baf 0

21:07:14.970 0x806¢ch00 nt .18 - Instance met hod receiver: nyapp/
My Ti me@5D8CBA8 argunments: ()

21:07:15.067 0x806chb00 nt. 3 > myapp/ WTiner.getTime()V Bytecode static
met hod

21:07:15.067 0x806¢ch00 nt.19 - Static method argunments: ()

21:07:15.067 0x806ch00 n.9 < myapp/ WTiner.getTime()V Bytecode static
met hod

48

21:07:15. 069 0x806¢ch00 n.o6 < nyapp/ WTime.test()V Bytecode met hod




"'-l
'R X X N
“920901
“eeet

RYY L

Other uses of trace

« Can count tracepoints using
. java -Xtrace:count={tracepoint_selection} Class
« This is almost like a sampling profiler




FE
'R B AN
To00
XYY
‘Nget

Outline

* Introduction
 Ildentifying performance problems

» Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J
« CPU bound applications
— Method trace
* |/0O bound applications
* Lock bound applications
— IBM Lock Analyzer for Java




FE
'K A X B
“e2001
MEY Y

RE T K,

Diagnbsing |/0-bound applications

A number of tools may be required to isolate the causes
/0 delays

« Use the GC and Memory Visualizer to check sweep times
— Sweep times should be very short
— Long sweep times indicate access to memory is slow
— This indicates the application is probably paging

« Use method trace to trace calls to network and disk I/0

'V darin
(]jg‘lfag




R B
'R X X N
“920901
“eneet
‘Ygef

Outline

* Introduction
 Ildentifying performance problems

» Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J
« CPU bound applications
— Method trace
* 1/0 bound applications
* Lock bound applications
— IBM Lock Analyzer for Java




FE
'R B AN
To00
XYY
‘Nget

Diaghésing lock bound applications (@}g?rfag

« Infelicitous synchronization can cause significant applicatios
delays

« IBM provides a tool to quickly diagnose and identify
contended locks

— A contended lock is the opposite of a contented lock!




R B
'R X X N
“920901
“eneet
‘Ygef

Outline

* Introduction
 Ildentifying performance problems

» Fixing performance problems

— Performance tools for ...

» Space bound applications

— IBM Monitoring and Diagnostic Tools for Java™ — GC and
Memory Visualizer

— IBM MDD4J
« CPU bound applications
— Method trace
* 1/0 bound applications
* Lock bound applications
— IBM Lock Analyzer for Java




FE B
» 990
"“e001¢
“Seoet
a kB

 Download from http://www.alphaworks.ibm.com/tech/jla

IBM ck Analyzer for Java

* JLA provides profiling data on monitors used in Java
applications and the JVM:

Counters associated with contended locks
Total number of successful acquires
Recursive acquires

Frequency with which a thread had to block waiting on the
monitor

Cumulative time the monitor was held.

For platforms that support 3 Tier Spin Locking the following

are also collected

* Number of times the requesting thread went through the inner

(spin loop) while attempting to acquire the monitor.

55



g wN
" 990
Se

Te00

i frae | IHCVOTIE

{ i ;
i 1] 5] i 1
6 138 jl‘wm l||s-aun-'r-uu,,-.-ug||: TAFS00 foteect
i L Pl 1AL [ETAAARE] el g OO riiRC O0ER0E (Objo il
] _I' T '1|.hr'il'l..'i|. ao oy iflaane Rl L e -|Illj ey ik sl o Tihem -I|1H Ml |
| 's] | e | Ii‘ull'l’.'||..|nI:.'r||I|||'.15.I|'||r|.-;1£'.-|'|1.lhrr el | e T e e S ik mrujj"l ACHECFA
1 it 1 I [ii ; i AL ) AL AL AT TS R | T S e
u I L] g i LITATALEL SUNFRrEANG N EFRAREL LAY A LOATE A LA S0 0 LG
L A B 1150 AAET [EVERRNQTRANSQEMEnTMEnSRerme B0 TLALT | 2 (L ini )




rFw Y G
N N N e
N N N
beeoe”
LY N F.

What do the bars mean?

 The Lock Analyzer provides very detailed information on
locking and synchronization in the table below the chart

* In most cases the chart will be enough

* The height of the bar indicates how often threads were
blocked waiting for the lock

e The colour of the bar indicates what fraction of the
attempts were unsuccessful




R B
'R X X N
“920901
“eneet
‘Ygef

Conclusions

« Improving application performance starts with identifying
limited resources

* Tools can help fix performance bottlenecks

— Space bound
 GC and Memory Visualizer
« MDD4J
— CPU bound
* Method tracing
— Lock bound
» Lock Analyzer for Java




R B
N N N N

-
® e
e =
'4'."
o

The following terms are trademarks of International
Business Machines Corporation in the United States, othg
countries, or both:

— IBM

— z/0S

— PowerPC

— WebSphere

* Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both.

« Solaris 1s a trademark of Sun Microsystems, Inc.

* Intel is a trademarks of Intel Corporation or its subsidiaries
In the United States, other countries, or both




Any Questions?



